Đề tài Những ứng dụng của laser trong y tế, tìm hiểu laser Nd: YAG

Xuất phát từ phát minh thiên tài của nhà vật lý vĩ đại A. Einstein (Đức) về hiện tượng phát xạ cưỡng bức năm 1917, các nhà vật lý khác đã nghiên cứu và chế tạo thành công máy laser đầu tiên vào năm 1960. Cho đến nay đã có hàng trăm loại laser được chế tạo và chúng đã thâm nhập vào hầu hết các lĩnh vực nghiên cứu khoa học, các nghành kinh tế và cuộc sống con người. Ứng dông laser trong y học là một trong những hướng phát triển mạnh nhất, hiệu quả nhất của trào lưu trên. Bức xạ laser khi tương tác với cơ thể tạo ra những hiệu ứng đặc biệt. Đó là hiệu ứng kích thích sinh học, quang hóa, quang nhiệt, quang cơ Trên cơ sở hiểu biết đầy đủ về các hiệu ứng sinh học của bức xạ laser, trong hơn 40 năm phát triển kỹ thuật này hàng loạt các thiét bị laser chuyên dụng cho điều trị và chuẩn đoán đã ra đời, được thử nghiệm thành công và đưa vào ứng dụng tại hầu hết các ngành và chuyên khoa y tế. Laser đã chứng minh ­u thế tuyệt đối của mình trong nhiều lĩnh vực như quang đông để hàn bong võng mạc giúp chữa trị hàng triệu người khỏi mù lòa, phẫu thuật xử lý các u ác tính hạn chế mức độ di căn và các hiệu ứng phụ, tạo hình mạch, mổ tim cấp cứu, phá sỏi, chuẩn đoán sớm bệnh tật đặc biệt là ung thư Đến nay việc ứng dụng laser trong y tế đã hình thành một chuyên ngành y học mới – chuyên ngành y học và ngoại khoa laser. Tại Việt Nam các thiết bị laser đã trở thành những thiết bị y tế phổ biến, được sử dụng rộng rãi tại hầu hết các bệnh viện trên toàn quốc. Trong những năm gần đây việc nghiên cứu, chế tạo các thiết bị laser trong y tế đã có những bước phát triển lớn. Trước đây chúng ta mới chỉ dừng lại ở việc nghiên cứu ứng dụng hai loại laser đơn giản là laser He-Ne và laser CO2. Hiện nay chóng ta đã di sâu nghiên cứu những loại laser phức tạp hơn và có những ứng dụng cao hơn nh­ laser YAG, laser excimer Em đã chọn đề tài về laser làm nội dung cho đồ án tốt nghiệp của mình. Trong đồ án em trình bày về những ứng dụng của laser trong y tế, tìm hiểu một loại laser cụ thể là laser Nd: YAG và thiết bị laser này trong y tế.

doc108 trang | Chia sẻ: vietpd | Lượt xem: 2276 | Lượt tải: 5download
Bạn đang xem trước 20 trang tài liệu Đề tài Những ứng dụng của laser trong y tế, tìm hiểu laser Nd: YAG, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
LỜI NÓI ĐẦU Xuất phát từ phát minh thiên tài của nhà vật lý vĩ đại A. Einstein (Đức) về hiện tượng phát xạ cưỡng bức năm 1917, các nhà vật lý khác đã nghiên cứu và chế tạo thành công máy laser đầu tiên vào năm 1960. Cho đến nay đã có hàng trăm loại laser được chế tạo và chúng đã thâm nhập vào hầu hết các lĩnh vực nghiên cứu khoa học, các nghành kinh tế và cuộc sống con người. Ứng dông laser trong y học là một trong những hướng phát triển mạnh nhất, hiệu quả nhất của trào lưu trên. Bức xạ laser khi tương tác với cơ thể tạo ra những hiệu ứng đặc biệt. Đó là hiệu ứng kích thích sinh học, quang hóa, quang nhiệt, quang cơ…Trên cơ sở hiểu biết đầy đủ về các hiệu ứng sinh học của bức xạ laser, trong hơn 40 năm phát triển kỹ thuật này hàng loạt các thiét bị laser chuyên dụng cho điều trị và chuẩn đoán đã ra đời, được thử nghiệm thành công và đưa vào ứng dụng tại hầu hết các ngành và chuyên khoa y tế. Laser đã chứng minh ­u thế tuyệt đối của mình trong nhiều lĩnh vực như quang đông để hàn bong võng mạc giúp chữa trị hàng triệu người khỏi mù lòa, phẫu thuật xử lý các u ác tính hạn chế mức độ di căn và các hiệu ứng phụ, tạo hình mạch, mổ tim cấp cứu, phá sỏi, chuẩn đoán sớm bệnh tật đặc biệt là ung thư…Đến nay việc ứng dụng laser trong y tế đã hình thành một chuyên ngành y học mới – chuyên ngành y học và ngoại khoa laser. Tại Việt Nam các thiết bị laser đã trở thành những thiết bị y tế phổ biến, được sử dụng rộng rãi tại hầu hết các bệnh viện trên toàn quốc. Trong những năm gần đây việc nghiên cứu, chế tạo các thiết bị laser trong y tế đã có những bước phát triển lớn. Trước đây chúng ta mới chỉ dừng lại ở việc nghiên cứu ứng dụng hai loại laser đơn giản là laser He-Ne và laser CO2. Hiện nay chóng ta đã di sâu nghiên cứu những loại laser phức tạp hơn và có những ứng dụng cao hơn nh­ laser YAG, laser excimer… Em đã chọn đề tài về laser làm nội dung cho đồ án tốt nghiệp của mình. Trong đồ án em trình bày về những ứng dụng của laser trong y tế, tìm hiểu một loại laser cụ thể là laser Nd: YAG và thiết bị laser này trong y tế. Trong quá trình thực hiện đồ án em xin bày tỏ lòng cảm ơn tới tiến sĩ Nguyễn Đức Thuận, cô Đinh Thị Nhung , KS Lê Huy Tuấn và phòng điện tử y tế- trung tâm công nghệ laser đã giúp đỡ em hoàn thành đồ án này. Do thời gian hạn chế nên đồ án của em còn nhiều thiếu sót. Em rất mong nhận được ý kiến nhận xét, đánh giá của thầy cô và các bạn. CHƯƠNG I: LÝ THUYẾT CHUNG VỀ LASER I: LASER LÀ GÌ? Laser là một trong những phát minh khoa học quan trọng nhất của thế kỷ XX. Thuật ngữ Laser là khuyếch đại ánh sáng bằng phát xạ bức xạ cưỡng bức (Light Amplification by Stimulated Emision of Radiation). Ông tổ của laser chính là nhà vật lý thiên tài Albert Einstein, người đã phát minh ra hiện tượng phát xạ cưỡng bức (Stimulated Emision of Radiation) vào năm 1917. Còn người phát minh ra nguyên lý cơ bản của máy laser là nhà vật lý người Mỹ Townes vào năm 1964. Cùng đồng thời trong năm đó hai nhà vật lý người Liên Xô là Prochorow và Babov cũng công bố các công trình phát hiện nguyên lý laser. Do phát minh này ba nhà vật lý trên đã được nhận giải thưởng Nobel vật lý năm 1964. Máy laser đầu tiên được chế tạo bởi nhà vật lý Mỹ Meiman vào năm 1960 trên cơ sở sử dụng oxit nhôm tinh khiết (Al2O3) có phủ ion crom gọi là laser Ruby. Sau thành công này trong một thời gian ngắn, người ta đã phát hiện hàng loạt chất có khả năng phát tia laser như hỗn hợp khí He và Ne (laser He- Ne), tinh thể bán dẫn Gallium Arsenid (laser diode GaAs), tinh thể Yttrium Aluminium Garnet (laser Nd: YAG), các chất màu pha lỏng khác nhau (laser màu). Hiện nay laser đã được ứng dụng rất rộng rãi trong hầu hết các ngành khoa học, công nghệ và y tế. Đặc biệt trong y tế, những ứng dụng laser đã đem lại những thành tựu nổi bật. II: NGUYÊN LÝ HOẠT ĐỘNG CỦA LASER 2.1: Các hiện tượng quang học cơ bản Phổ năng lượng của các hệ vi hạt không phải là liên tục mà là gián đoạn. Trong điều kiện cân bằng, không có kích thích bên ngoài, hệ vi hạt thường chiếm những mức năng lượng thấp nhất được gọi là những mức năng lượng cơ bản. Khi có tác dụng của các yếu tố bên ngoài như tác dụng của bức xạ, tương tác của các hạt điện tử, ion, nguyên tử khác, tác dụng của điện trường, nhiệt độ, hệ vi mô có thể bị kích thích chuyển lên các trạng thái với mức năng lượng cao hơn. Các trạng thái với năng lượng cao hơn trạng thái cơ bản được gọi là các trạng thái kích thích. Có các hiện tượng quang học cơ bản sau đây: 2.1.1: Hiện tượng hấp thụ ánh sáng Các nhân tử khác nhau có số điện tử khác nhau và như vậy có số quỹ đạo khác nhau tương ứng với nó là các mức năng lượng khác nhau. Giả sử ta có một hệ nguyên tử có hai mức năng lượng nh­ hình vẽ:  Hình 1.1: Mức năng lượng. Khi chiếu một chùm ánh sáng đơn sắc (chùm ánh sáng có các photon giống hệt nhau và năng lượng của mỗi photon đúng bằng hiệu năng lượng của hai mức-E) thì khi photon đi vào môi trường nó có thể bị các điện tử ở mức thấp E1 hấp thụ và nhờ có năng lượng này điện tử có thể nhảy lên mức E2. Hiện tượng này được gọi là hiện tượng hấp thụ.  Hình 1.2: Hiện tượng hấp thụ. Nh­ vậy, hiện tượng hấp thụ ánh sáng là quá trình các điện tử ở mức thấp hấp thụ photon và nhảy lên mức năng lượng cao hơn. HÊp thụ luôn luôn làm ánh sáng yếu đi. 2.1.2: Hiện tượng phát xạ tự do. Đây là quá trình xảy ra hoàn toàn ngẫu nhiên, điện tử khi nhảy lên mức kích thích sau một thời gian nhất định ( gọi là thời gian sống của điện tử ở mức kích thích) nó lại trở về mức cơ bản. Khi trở về mức thấp một năng lượng sẽ được tạo ra dưới dạng nhiệt hoặc ánh sáng.  Hình 1.3: Hiện tượng phát xạ tự do. Các chuyển mức phát xạ tự do xảy ra ngẫu nhiên và độc lập với nhau, nên các photon phát ra tuy có cùng tần số nhưng có pha khác nhau, có hướng khác nhau, có mặt phân cực khác nhau. 2.1.3: Hiện tượng phát xạ cưỡng bức. Cũng như hiện tượng hấp thụ khi ta chiếu chùm ánh sáng đơn sắc với năng lượng của từng photon bằng E vào môi trường có hai mức năng lượng thì photon có khả năng sẽ tương tác với điện tử ở mức trên và có khả năng cưỡng bức các điện tử này bỏ mức kích thích sớm hơn thời gian sống của nó.  Hình 1. 4: Hiện tượng phát xạ cưỡng bức. Sự chuyển mức năng lượng này sẽ phát xạ ra photon có năng lượng E và có các tính chất giống hệt với photon đã cưỡng bức điện tử nhảy xuống nh­ hướng truyền, độ phân cực, pha, tần. Trong trường hợp này photon kích thích không bị mất mát nh­ trong trường hợp hấp thụ. Photon ban đầu này vẫn tồn tại và duy trì những tính chất ban đầu của nã . Ta không thể phân biệt được sự khác nhau giữa photon ban đầu với photon sinh ra từ dịch chuyển cưỡng bức điện tử. Tóm lại, phát xạ cưỡng bức là sự phát xạ các photon giống hệt nhau do sự dịch chuyển cưỡng bức của các điện tử dưới tác dụng của các photon. Hiện tượng phát xạ cưỡng bức mang tính chất khuyếch đại theo phản ứng dây chuyền : 1 sinh ra 2, 2 sinh ra 4. 2.2: Nguyên lý hoạt động của laser 2.2.1: Nguyên lý Nh­ ở trên đã xem xét 3 hiện tượng quang học cơ bản xảy ra trong một môi trường bất kì khi chiếu một chùm ánh sáng. Đó là: Hiện tượng hấp thụ làm suy yếu chùm ánh sáng. Hiện tượng phát xạ tự do làm chùm sáng mạnh lên. Hiện tượng phát xạ cưỡng bức cũng lám cho chùm sáng mạnh lên. Môi trường ở trạng thái cân bằng thì số điện tử ở mức thấp ( quy ước là n1) bao giê cũng lớn hơn số điện tử ở mức kích thích ( quy ước là n2). Hiện tượng hấp thụ tỉ lệ với n1 còn hiện tượng phát xạ tự do và phát xạ cưỡng bức thì tỉ lệ với n2 , với hệ số tỉ lệ gần nh­ nhau. Vì nguyên nhân đó nên hấp thụ bao giê cũng mạnh hơn phát xạ cưỡng bức và phát xạ tự do, do đó chùm ánh sáng đi qua môi trường bình thường bao giê cũng yếu đi. Để có hiệu ứng Laser, tức là chùm ánh sáng được khuyếch đại thì thì ta phải tạo ra một môi trường đặc biệt mà ở đây hiện tượng phát xạ cưỡng bức xảy ra phải mạnh hơn hiện tượng hấp thụ. Hiện tượng này chỉ xảy ra trong môi trường mà tại đó các điện tử ở mức trên n2 lớn hơn số điện tử ở mức dưới n1. Môi trường nh­ vậy được gọi là môi trường nghịch đảo nồng độ (đảo ngược độ tích luỹ) với n2> n1. Môi trường đặc biệt có sự đảo ngược độ tích luỹ nh­ ta nói ở trên là yếu tố cơ bản của mọi Laser. Môi trường đó gọi là hoạt chất của Laser hay gọi ngắn gọn là hoạt chất. Khi ánh sáng đi qua môi trường nghịch đảo mật độ cường độ ánh sáng tăng theo hàm mũ với :  ở đây < 0. Ngoài hoạt chất, mỗi Laser bất kì còn phải có yếu tố khác là nguồn nuôi, yếu tố cung cấp năng lượng cho hoạt chất laser để tạo và duy trì sự đảo ngược độ tích luỹ các điện tử ở môi trường laser và buồng cộng hưởng Nh­ vậy tiền đề cho quá trình khuyếch đại là: Tạo ra và duy trì môi trường đảo mật độ, quá trình này được gọi là quá trình bơm. Tạo điều kiện để phát xạ cưỡng bức áp đảo phát xạ tự nhiên. Để thực hiện được điều này người ta sử dụng các loại buồng cộng hưởng. 2.2.2: Quá trình bơm Môi trường nằm trong trạng thái nghịch đảo mật độ là trạng thái không bền và các nguyên tử luôn có xu hướng trở về trạng thái cân bằng. Vì vậy, muốn duy trì trạng thái nghịch đảo mật độ phải thường xuyên tiêu tốn một năng lượng để kích thích hệ hạt. Quá trình kích thích hệ hạt này được gọi là quá trình bơm. Quá trình bơm , kích thích tuỳ thuộc vào loại hệ, có thể tực hiện bằng nhiều cách: phương pháp kích thích bằng quang học( bơm quang học), và phương pháp kích thích băng điện (bơm điện). *Bơm quang học: Đây là phương pháp kích thích hệ bằng bức xạ điện từ nói chung, bao gồm: viba, hồng ngoại, ánh sáng, tia tử ngoại …Đây là phương pháp kích thích được dùng phổ biến. Trong mô hình hai mức năng lượng, ở trạng thái cân bằng nếu E1 N2. Nếu chúng ta kích thích hệ bằng cách dọi vào hệ ánh sáng có tần số đáp ứng điều kiện h = E2- E1, thì N2 sẽ tăng lên, N1 giảm xuống và N1+ N2 = N = const, N là số nguyên tử của cả hệ. Như đã biết nếu tăng công suất bơm thì N = N1- N2 sẽ giảm dần. Tuy nhiên tính toán cho thấy rằng N chỉ có thể tiến tới không, nghĩa là N2N1, chứ không thể đạt được N2 > N1. Nghĩa là trong hệ hai mức năng lượng, bằng phương pháp bơm quang học ta không thể đạt được môi trường đảo mật độ. Trong trường hợp N = 0, N1= N2 được gọi là hiệu ứng bão hòa. Hiệu ứng bão hòa càng dễ đạt được khi thời gian sống của trạng thái ứng với E2 càng lớn. Trạng thái của hệ khi N1= N2 gọi là trạng thái bão hòa, trong trạng thái này hệ không hấp thụ cũng không phát xạ. Mặc dù hiệu ứng bão hòa không cho phép ta tạo ra môi trường đảo mật độ nhưng nó đóng vai trò quan trọng trong việc tạo ra môi trường đó bằng mô hình ba mức, bốn mức.  Hình 1.5: Sơ đồ ba mức năng lượng Giả sử ta có một hệ nguyên tử có ba mức năng lượng như ở hình trên với các thông số E1, N1; E2, N2, 2; E3, N3, 3, trong đó E1 < E2 < E3 là năng lượng tương ứng của ba mức, N1+ N2+ N3 = N, N1, N2, N3 là nồng độ nguyên tử ở ba trạng thái, N là nồng độ toàn phần. 2, 3 là thời gian sống của trạng thái E2, E3 tương ứng. Nếu trong một hệ ba mức với 3 < 2 chóng ta không thể dùng bơm quang học có bước sóng h = E3- E1 để đạt được trạng thái bão hòa N1= N3 vì chuyển mức tự phát E3E2 lớn. Tuy nhiên có thể bằng cách này làm tăng nồng độ N2 và nhờ đó mà thiết lập được sự đảo mật độ giữa hai mức E2 và E1 để thu được phát xạ cưỡng bức h = E2- E1. * Bơm điện Trong trường hợp laser khí để tạo điều kiện nghịch đảo nồng độ, người ta dùng hiệu ứng va chạm giữa những nguyên tử hoặc phân tử khí với những điện tử tự do chuyển động nhanh dưới tác động của điện trường ngoài. Do va chạm với những điện tử nhanh, những nguyên tử hoặc phân tử khí trong bình với áp suất thấp sẽ bị ion hóa hoặc kích thích hóa. Người ta quan tâm nhiều tới trường hợp kích thích hóa, khi đó những điện tử của nguyên tử hay phân tử nhận được năng lượng do va chạm sẽ dịch chuyển lên mức năng lượng cao hơn, tức là những mức kích thích. Những dịch chuyển tự phát từ những mức kích thích đó xuống mức cơ bản sẽ bức xạ năng lượng làm sáng chất khí phóng điện như trong các đèn ổn áp có khí…Trong laser khí chính những nguyên tử hoặc phân tử kích thích hóa sẽ tạo nên nghịch đảo nồng độ và cho bức xạ cảm ứng. Người ta có thể thực hiện phóng điện bằng năng lượng cao tần hoặc điện áp một chiều. Bơm điện cũng được dùng trong laser bán dẫn bằng cách đặt điện áp vào mẫu để phun hạt dẫn vào mẫu tạo ra môi trường đảo mật độ. 2.2.3: Buồng cộng hưởng Buồng cộng hưởng là nơi cho phép chùm sáng qua lại hoạt chất nhiều lần trước khi đạt trạng thái ổn định và phát ra tia laser đi qua gương ở hai bên. Do buồng cộng hưởng chỉ được giới hạn bởi hai mặt phản xạ ở hai đầu còn các mặt khác đều hở nên thường gọi là buồng cộng hưởng hở. Việc sử dụng buồng cộng hưởng hở trong kỹ thuật laser là một điều bắt buộc. Buồng cộng hưởng có hai chức năng sau đây: * Thực hiện hồi tiếp dương Tuy môi trường hoạt tính đặt trong buồng cộng hưởng có khả năng khuếch đại tín hiệu đi qua nã theo luật hàm số mũ, nhưng độ khuếch đại này không lớn vì chiều dài của hoạt chất là có hạn. Để có được khuếch đại lớn phải tăng kích thước của hoạt chất lên rất nhiều lần. Ví dụ nếu dùng hoạt chất là khí CO2, để có được công suất đầu ra là 1W cần phải sử dụng một ống chứa khí dài 104 m, điều này không thể thực hiện được. Vì vậy, vấn đề tăng chiều dài của hoạt chất phải được sử dụng bằng cách khác. Chính nhờ buồng cộng hưởng quang học mà mà việc tăng chiều dài của hoạt chất được giải quyết một cách đơn giản. Trong buồng cộng hưởng tia sáng được phản xạ nhiều lần và đây chính là biện pháp tăng quãng đường đi của tia.  Hình 1.6 : Sù hình thành hồi tiếp dương trong buồng cộng hưởng Quá trình xảy ra như sau: Giả sử, dịch chuyển tự phát của nguyên tử nào đó trong buồng cộng hưởng xuất hiện một sóng ánh sáng. Sóng sẽ được khuếch đại lên do các dịch chuyển cưỡng bức khi nó đi qua líp hoạt chất. Khi tới mặt phản xạ, một phần sóng ánh sáng có thể bị mất do hiện tượng hấp thụ hoặc truyền qua, nhưng phần chủ yếu được phản xạ trở lại và được tiếp tục khuếch đại lên trên đường đi tới mặt phản xạ kia. Tại đây cũng sẽ sảy ra quá trình tương tự và cứ như vậy, sau rất nhiều lần phản xạ ta sẽ thu được dòng bức xạ có cường độ lớn. Khuếch đại ở đây không thể nào lớn vô cùng được, nó bị giới hạn bởi công suất của nguồn bơm. Vì vậy cường độ bức xạ chỉ tăng đến khi thiết lập được điều kiện cân bằng năng lượng. * Tạo ra bức xạ định hướng, đơn sắc, kết hợp Do buồng cộng hưởng là hở nên những sóng truyền dọc theo trục của buồng cộng hưởng sẽ đi qua hoạt chất nhiều lần và được khuếch đại lên. Những sóng ánh sáng này xác định công suất ra của laser. Còn những sóng ánh sáng nào lan truyền dưới những góc lệch tương đối lớn so với trục của buồng cộng hưởng thì sau một vài lần phản xạ sẽ thoát ra ngoài. Vì vậy bức xạ hình thành ở cửa ra của buồng cộng hưởng có tính định hướng rất cao. Trong quá trình phản xạ nhiều lần giữa hai gương, pha của sóng ánh sáng luôn bảo toàn và quan hệ pha giữa các sóng đó cũng không đổi, do đó bức xạ ra là bức xạ kết hợp. Cuối cùng nhờ có buồng cộng hưởng có thể thực hiện được các phương pháp chọn lọc dao động khác nhau để thu được bức xạ trong mét dải phổ rất hẹp, gần nh­ đơn sắc. Nh­ vậy có thể nói rằng, buồng cộng hưởng quang học đóng vai trò quyết định trong việc hình thành các tính chất của laser. Hệ số phẩm chất của buồng cộng hưởng: Q= 2Ed/ P0 Ed: năng lượng dự trữ trong buồng cộng hưởng P0: năng lượng trung bình bị tiêu hao trong 1s Buồng cộng hưởng có nhiều dạng khác nhau. Loại đơn giản và thông dụng nhất là hệ gồm hai gương phẳng đặt song song (trong quang học người ta gọi hệ cộng hưởng này là giao thoa kế Fabri- Perot). Buồng cộng hưởng gồm hai gương phẳng đòi hỏi khắt khe về độ song song của các gương và vì thế rất khó chỉnh nhưng nó lại cho bức xạ có độ định hướng cao. Loại này thường được sử dụng trong các laser rắn và laser bán dẫn. Trong buồng cộng hưởng quang học đặc biệt cần chú ý đến đặc điểm cấu tạo và yêu cầu kỹ thuật đối với các gương. Yêu cầu cơ bản của các gương laser là phải đảm bảo sao cho tổn hao trong vật liệu dùng làm bề mặt phản xạ là nhỏ nhất. Hiện nay, trong kỹ thuật laser phần lớn các gương mạ bạc, nhôm hoặc mạ vàng đã được thay thế bằng các gương điện môi nhiều líp. So với các gương có líp phủ kim loại thì gương điện môi nhiều líp có một loạt ưu điểm nổi bật: tính chọn lọc và hệ số phản xạ cao, phần năng lượng bị tiêu hao do hấp thụ rất nhỏ. Vì vậy các gương điện môi nhiều líp có thể đảm bảo được hệ số phẩm chất của buồng cộng hưởng rất cao, chịu được năng lượng bức xạ lớn và tuổi thọ của gương cũng rất cao. III: CÁC TÍNH CHẤT CƠ BẢN CỦA LASER Laser là một nguồn sáng, tuy nhiên đây là một nguồn sáng đặc biệt và chính những tính chất đặc biệt Êy đảm bảo hiệu quả cao trong việc ứng dụng vào những lĩnh vực khác nhau của cuộc sống. Laser có những tính chất điển hình sau: 3.1: Độ định hướng cao Từ nguyên lý hoạt động của laser ta thấy laser phát theo một hướng vuông góc với gương của buồng cộng hưởng. Tia laser phát ra hầu nh­ dưới dạng chùm sáng song song. Tuy vậy do ảnh hưởng nhiễu xạ ở biên của chùm tia, tia laser phát ra với một góc mở nhất định nh­ hình:  Hình 1.7: Góc mở của chùm tia laser Từ lâu con người đã rất cần những nguồn sáng song song trước hết dùng để đo xa, liên lạc, dẫn đường nh­ các đèn pha, đèn chiếu…Những chùm sáng này có góc mở cỡ vài độ, góc chiếu xa tới khoảng 5- 10 km. Đối với laser góc mở có thể đạt giá trị rất nhỏ cỡ vài phót góc (1 phót góc = 1/60 độ), có trường hợp chỉ vài giây góc. Vì vậy laser có thể chiếu đi rất xa cỡ hàng nghìn cây sè . 3.2: Tính đơn sắc rất cao Độ đơn sắc của nguồn sáng được hiểu là chùm sáng đó có một màu và khả năng tập trung năng lượng vào một màu Êy. Với ý nghĩa nh­ vậy laser đúng là một nguồn sáng đặc biệt mà không một nguồn sáng nào khác có thể so sánh được. Những máy quang phổ có thể cho ánh sáng một màu với độ tinh tương đương với laser nhưng lại thua laser cỡ 1 tỷ lần về tập trung năng lượng. Mặt trời có thể cho năng lương rất lớn nhưng lại rải trên nhiều màu. Vì vậy tính đơn sắc rất quan trọng trong việc sử dụng laser nh­ mét thiết bị vật lý trị liệu thông qua điều trị bằng ánh sáng phụ thuộc rất nhiều vào độ đơn sắc. 3.3: Tính kết hợp của các photon trong chùm tia laser Tính kết hợp của ánh sáng được hiểu là sự hoạt động nhịp nhàng của các photon trong chùm sáng Êy. Độ nhịp nhàng càng cao thì tính kết hợp càng lớn và trong trường hợp các photon hoạt động một cách hỗn loạn thì tính kết hợp bằng không. Tia laser nh­ chóng ta đã biết sinh ra trên cơ sở của hiện tượng phát xạ cưỡng bức, do vậy các photon của tia laser giống hệt nhau. Tính giống hệt nhau đó đảm bảo cho sự hoạt động nhịp nhàng của tia laser. Chính tính kết hợp của tia laser đảm bảo cho laser có rất nhiều ứng dụng đọc đáo: khả năng khoan lỗ cực nhỏ, cắt vết nhỏ và tinh và một loạt những đo đạc quan trọng khác trong ngành quang phổ. 3.4: Tính chất từ phát liên tục đến phát xung cực ngắn Thời gian ban đầu thông thường người ta chế tạo các laser phát liên tục hoặc phát xung cường độ tự do với độ dài xung cỡ ms. Nhưng với tiến trình phát triển công nghệ cao trong lĩnh vực laser, người ta đã đạt được việc phát đồng bộ chế độ, cho phép tập trung năng lượng laser trong thời gian xung cực ngắn chỉ cỡ nano giây hoặc pico giây. Cho đến nay cũng chỉ có laser có khả năng phát với thời gian ngắn như vậy. 3.5: Công suất phát laser Công suất của laser thay đổi tùy theo từng loại cụ thể. Có những loại laser phát xung đạt công suất 1- 100 triệu kW nh­ laser thủy tinh Nd. Những laser liên tục cũng có thể đạt công suất tối đa 1000 kW. Trong y học thường sử dụng laser excimer, laser Nd: YAG phát xung với công suất 10000 kW đến 10 triệu kW, laser CO2, laser Argon phát liên tục từ 1- 100 W, trong vật lý trị liệu thông thường sử dụng laser He- Ne và laser bán dẫn có công suất trung bình từ 0,1- 10 mW. Thông sè  Ký hiệu  Đơn vị  Công thức tính   Bước sóng laser    1 = 1/1000 m 1 nm= 1/1000  1 A= 1/10 nm  = c/ c: tốc độ ánh sáng   Công suất laser  P  W 1 kW= 1000 W  P= E/t E: năng lượng của laser t: thời gian phá