Đồ án Tổng quan về chuẩn nén MPEG-4 H.264/AVC và khả năng ứng dụng trong thực tiễn

Hiện nay, chúng ta đang sống trong một kỷ nguyên mới “Kỷ nguyên truyền thông đa phương tiện” các thiết bị mới, các kỹ thuật mới lần lượt ra đời nhằm mục đích đáp ứng nhu cầu giải trí cho con người ngày một tốt hơn. Các ứng dụng đa phương tiện thời gian thực truyền trên mạng di động, mạng Internet, mạng truyền hình ngày càng phát triển rầm rộ, các nhà sản xuất thiết bị chú trọng áp dụng các công nghệ nén tiên tiến vào thiết bị của mình nhằm thõa mãn nhu cầu “chất lượng trung thực về âm thanh, hình ảnh” của con người cũng như khả năng đáp ứng yêu cầu thực tế của công nghệ. Thế nhưng không phải nhu cầu nào của chúng ta đều có thể được đáp ứng một cách thuận lợi, vì sự gắn liền giữa độ phức tạp, tốn kém chi phí đầu tư cơ sở hạ tầng, thiết bị đầu cuối , luôn đi kèm với công nghệ cao. Bên cạnh đó vấn đề truyền thông nội dung đa phương tiện hiện nay đang gặp một số khó khăn: băng thông đường truyền, nhiễu kênh, giới hạn của pin cho các ứng dụng . Trong khi băng thông kênh truyền phải chờ đợi một công nghệ mới của tương lai mới có thể cải thiện, còn việc cải thiện giới hạn của pin dường như không đáp ứng được sự phát triển của các dịch vụ trong tương lai, thì phương pháp giảm kích thước dữ liệu bằng các kỹ thuật nén là một cách giải quyết hiệu quả các khó khăn trên. Cho đến nay có rất nhiều kỹ thuật nén dữ liệu đa phương tiện như: chuẩn JPEG, chuẩn JPEG2000 và chuẩn MPEG tuy nhiên hiệu quả nén của các tiêu chuẩn này cũng chưa được cao, và vẫn chưa đáp ứng tốt yêu cầu của truyền hình HDTV cũng như việc lưu trữ dung lượng còn rất lớn. Gần đây nhất là sự thành công của tiêu chuẩn mã hóa MPEG-2 được đánh dấu nổi bật từ những lần phóng thương mại đầu tiên các hệ thống vệ tinh DTH vào giữa những năm 1990 và thành công của chuẩn nén MPEG-4 Part 2 trong ứng dụng truyền hình số, các ứng dụng đồ họa Nhưng với yêu cầu bộ mã hóa có thể tương thích với các ứng dụng tốc độ bit thấp, thì nó không đáp ứng hiệu quả. Từ việc nghiên cứu khắc phục nhược điểm của MPEG-2, phát triển bổ sung cho MPEG-4 Part 2 để cho ra đời những chuẩn nén tiên tiến hơn, mà nổi bật là MPEG-4 H.264/AVC. Nó là sự kết hợp hoàn hảo giữa 2 tổ chức nổi tiếng: nhóm chuyên gia mã hóa video của tổ chức ITU và nhóm chuyên gia xử lý ảnh động ISO/IEC. Ta thử xét một ví dụ minh họa trong truyền hình số, nếu sử dụng kỹ thuật nén MPEG-2 cung cấp định dạng SDTV với độ phân giải 640x480 pixel thì cần băng thông 4.3Mbps trên một kênh truyền còn đối với HDTV thì cần 19Mbps, nhưng nếu sử dụng chuẩn nén H.264 thì băng thông cho truyền hình SDTV chỉ có 1.5 – 2 Mbps hoặc 6-9 Mbps đối với HDTV. Chính vì những ưu điểm đó mà MPEG-4 H.264/AVC đã dần dần chứng tỏ vị thế số 1 của mình, những ưu việt mà chuẩn nén này mang lại chắc chắn sẽ có ảnh hưởng tích cực đến thị trường phim ảnh, cũng như ngành công nghiệp chế tạo thiết bị đầu cuối. Để có thể hiểu biết hơn về tiêu chuẩn nén tiên tiến này, em đã chọn đề tài “Tổng quan về chuẩn nén MPEG-4 H.264/AVC và khả năng ứng dụng trong thực tiễn” làm đề tài tốt nghiệp của mình. Sau hơn 3 tháng nỗ lực hết mình, về cơ bản Đồ án cũng đã cho ta cái nhìn tổng quát về chuẩn nén MPEG-4 H.264/AVC, đồng thời với sự minh họa bằng chương trình Matlab 7.01, cũng giúp cho ta hiểu rõ hơn những ưu điểm của chuẩn nén này, tuy nhiên do có sự hạn chế về kinh nghiệm, thời gian, nên sẽ không tránh khỏi sai sót, kính mong Quý Thầy Cô, bạn bè, đồng nghiệp tham khảo đóng góp ý kiến. Em xin chân thành cảm ơn TS. Trần Dũng Trình đã bỏ ra chút thời gian quý báu, hướng dẫn tận tình và cung cấp tài liệu bổ ích trong quá trình làm Đồ án. Đồng thời cũng xin cảm ơn Quý Thầy Cô Trường Đại Học Kỹ Thuật Công Nghệ Thành Phố Hồ Chí Minh, đã tận tình dạy dỗ, truyền thụ kiến thức và kinh nghiệm cho em trong suốt hơn bốn năm qua, cảm ơn các bạn bè đã quan tâm, chia xẻ, đóng góp ý kiến. Kính chuùc Quyù Thaày Coâ vaø baïn beû ñöôïc nhieàu söùc khoûe.

doc113 trang | Chia sẻ: oanhnt | Lượt xem: 1929 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Đồ án Tổng quan về chuẩn nén MPEG-4 H.264/AVC và khả năng ứng dụng trong thực tiễn, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
NHẬN XÉT CỦA GIÁO VIÊN HƯỚNG DẪN Tên đề tài : “Tổng quan về chuẩn nén MPEG-4 H.264/AVC và khả năng ứng dụng trong thực tiễn” GVHD : TS. TRẦN DŨNG TRÌNH SVTH : NGUYỄN QUANG HOÀNG SƠN MSSV : 103101088 LỚP : 03DDT2 Tp.HCM ngày tháng năm 2008 GVHD TS. Trần Dũng Trình NHẬN XÉT CỦA GIÁO VIÊN PHẢN BIỆN Tên đề tài : “Tổng quan về chuẩn nén MPEG-4 H.264/AVC và khả năng ứng dụng trong thực tiễn” GVHD : TS. TRẦN DŨNG TRÌNH GVPB : KS. TRẦN DUY CƯỜNG SVTH : NGUYỄN QUANG HOÀNG SƠN MSSV : 103101088 LỚP : 03DDT2 Tp.HCM ngày tháng năm 2008 GVPB KS. Trần Duy Cường MỤC LỤC LỜI GIỚI THIỆU H iện nay, chúng ta đang sống trong một kỷ nguyên mới “Kỷ nguyên truyền thông đa phương tiện” các thiết bị mới, các kỹ thuật mới lần lượt ra đời nhằm mục đích đáp ứng nhu cầu giải trí cho con người ngày một tốt hơn. Các ứng dụng đa phương tiện thời gian thực truyền trên mạng di động, mạng Internet, mạng truyền hình…ngày càng phát triển rầm rộ, các nhà sản xuất thiết bị chú trọng áp dụng các công nghệ nén tiên tiến vào thiết bị của mình nhằm thõa mãn nhu cầu “chất lượng trung thực về âm thanh, hình ảnh” của con người cũng như khả năng đáp ứng yêu cầu thực tế của công nghệ. Thế nhưng không phải nhu cầu nào của chúng ta đều có thể được đáp ứng một cách thuận lợi, vì sự gắn liền giữa độ phức tạp, tốn kém chi phí đầu tư cơ sở hạ tầng, thiết bị đầu cuối…, luôn đi kèm với công nghệ cao. Bên cạnh đó vấn đề truyền thông nội dung đa phương tiện hiện nay đang gặp một số khó khăn: băng thông đường truyền, nhiễu kênh, giới hạn của pin cho các ứng dụng…. Trong khi băng thông kênh truyền phải chờ đợi một công nghệ mới của tương lai mới có thể cải thiện, còn việc cải thiện giới hạn của pin dường như không đáp ứng được sự phát triển của các dịch vụ trong tương lai, thì phương pháp giảm kích thước dữ liệu bằng các kỹ thuật nén là một cách giải quyết hiệu quả các khó khăn trên. Cho đến nay có rất nhiều kỹ thuật nén dữ liệu đa phương tiện như: chuẩn JPEG, chuẩn JPEG2000 và chuẩn MPEG… tuy nhiên hiệu quả nén của các tiêu chuẩn này cũng chưa được cao, và vẫn chưa đáp ứng tốt yêu cầu của truyền hình HDTV…cũng như việc lưu trữ dung lượng còn rất lớn. Gần đây nhất là sự thành công của tiêu chuẩn mã hóa MPEG-2 được đánh dấu nổi bật từ những lần phóng thương mại đầu tiên các hệ thống vệ tinh DTH vào giữa những năm 1990 và thành công của chuẩn nén MPEG-4 Part 2 trong ứng dụng truyền hình số, các ứng dụng đồ họa… Nhưng với yêu cầu bộ mã hóa có thể tương thích với các ứng dụng tốc độ bit thấp, thì nó không đáp ứng hiệu quả. Từ việc nghiên cứu khắc phục nhược điểm của MPEG-2, phát triển bổ sung cho MPEG-4 Part 2 để cho ra đời những chuẩn nén tiên tiến hơn, mà nổi bật là MPEG-4 H.264/AVC. Nó là sự kết hợp hoàn hảo giữa 2 tổ chức nổi tiếng: nhóm chuyên gia mã hóa video của tổ chức ITU và nhóm chuyên gia xử lý ảnh động ISO/IEC. Ta thử xét một ví dụ minh họa trong truyền hình số, nếu sử dụng kỹ thuật nén MPEG-2 cung cấp định dạng SDTV với độ phân giải 640x480 pixel thì cần băng thông 4.3Mbps trên một kênh truyền còn đối với HDTV thì cần 19Mbps, nhưng nếu sử dụng chuẩn nén H.264 thì băng thông cho truyền hình SDTV chỉ có 1.5 – 2 Mbps hoặc 6-9 Mbps đối với HDTV. Chính vì những ưu điểm đó mà MPEG-4 H.264/AVC đã dần dần chứng tỏ vị thế số 1 của mình, những ưu việt mà chuẩn nén này mang lại chắc chắn sẽ có ảnh hưởng tích cực đến thị trường phim ảnh, cũng như ngành công nghiệp chế tạo thiết bị đầu cuối. Để có thể hiểu biết hơn về tiêu chuẩn nén tiên tiến này, em đã chọn đề tài “Tổng quan về chuẩn nén MPEG-4 H.264/AVC và khả năng ứng dụng trong thực tiễn” làm đề tài tốt nghiệp của mình. Sau hơn 3 tháng nỗ lực hết mình, về cơ bản Đồ án cũng đã cho ta cái nhìn tổng quát về chuẩn nén MPEG-4 H.264/AVC, đồng thời với sự minh họa bằng chương trình Matlab 7.01, cũng giúp cho ta hiểu rõ hơn những ưu điểm của chuẩn nén này, tuy nhiên do có sự hạn chế về kinh nghiệm, thời gian,…nên sẽ không tránh khỏi sai sót, kính mong Quý Thầy Cô, bạn bè, đồng nghiệp tham khảo đóng góp ý kiến. Em xin chân thành cảm ơn TS. Trần Dũng Trình đã bỏ ra chút thời gian quý báu, hướng dẫn tận tình và cung cấp tài liệu bổ ích trong quá trình làm Đồ án. Đồng thời cũng xin cảm ơn Quý Thầy Cô Trường Đại Học Kỹ Thuật Công Nghệ Thành Phố Hồ Chí Minh, đã tận tình dạy dỗ, truyền thụ kiến thức và kinh nghiệm cho em trong suốt hơn bốn năm qua, cảm ơn các bạn bè đã quan tâm, chia xẻ, đóng góp ý kiến. Kính chuùc Quyù Thaày Coâ vaø baïn beû ñöôïc nhieàu söùc khoûe. Tp.hcm, thaùng 01/2008 Sinh vieân thöïc hieän Nguyeãn Quang Hoaøng Sôn CÁC THUẬT NGỮ TIẾNG ANH BAC Mã hóa số học nhị phân (Binary Arithmetic Coding) CA Mã hóa thích nghi theo nội dung (Context Adaptive) CC Mã xóa (Clear code) CIF Định dạng mã hóa hình ảnh có kích thước 352 x 288 (Common Intermediate Format) DAB Phát quảng bá âm thanh số (Digital Audio Broadcasting) DCT Biến đổi Cosine rời rạc (Discrete Cosine Transform) DFT Biến đổi Fourier rời rạc (Discrete Fourier Transform) DPCM Điều xung mã vi sai (Differential Pulse Code Modulation) DS Thuật toán tìm kiểu hình thoi (Diamond Search) DTH DWT Biến đổi Wavelet rời rạc (Discrete Wavelet Transform) EOI Mã kết thúc (End Of Information) ES Dòng cơ bản (Elemenatary Stream) Exp-Golomb Mã Exponential Golomb FLC Mã hóa có chiều dài cố định (Fixed-Length Code) FMO Thứ tự MB mềm dẻo (Flexible Macroblock Order) GOP Nhóm ảnh (Group Of Pictures) GMC Bù chuyển động toàn phần (Global Motion Compensation) HDS Thuật toán tìm hình thoi nằm ngang (Horizontal Diamond search) HDTV Truyền hình phân giải cao (High Definition Television) HEXBS Thuật toán tìm kiểu hình lục giác (Hexagon-Based Search) ICT Biến đổi nguyên Cosine rời rạc (Integer Discrete Cosine Transform) IDR Ảnh làm tươi tức thời bộ giải mã (Instantaneous Decoder Refresh Picture) IDCT Biến đổi ngược Cosine rời rạc (Inverse Discrete Cosine Transform) IP Giao thức Internet ( Internet Protocol) ISDN Mạng tích hợp dịch vụ số (Integrated Service Digital Network) JPEG Chuẩn nén ảnh của ủy ban JPEG quốc tế (Joint Photographic Experts Group) JPEG2000 Chuẩn nén ảnh JPEG2000 LOSSLESS Kỹ thuật nén ảnh không tổn hao (không mất dữ liệu) LOSSY Kỹ thuật nén ảnh có tổn hao (có mất dữ liệu) MB Đa khối (Macroblock) MBAFF Mã hóa khung mành thích nghi (Macroblock-Adaptive Frame-Field coding) MC Bù chuyển động (Motion Compensation) ME Ước lượng chuyển động(Motion Estimate) MMS Dịch vụ tin nhắn đa phương tiện (Multimedia Messaging Services) MSE Sai số bình phương trung bình (Mean Square Error) MPEG Nhóm chuyên gia nén ảnh động (Moving Pictures Experts Group) NAL Lớp trừu tượng mạng (Network Abstraction Layer) NNS Tìm ở khối gần nhất (Nearest Neighbors Search) PCM Điều xung mã (Pulse Code Modulation) PF Hệ số co dãn (Parameter Factor) MF Hệ số nhân(Multipy Factor) PSNR Tỷ số tín hiệu đỉnh trên nhiễu (Peak Signal to Noise Ratio) QCIF Định dạng hình ảnh có kích thước 176 x 144 (Quarter Common Intermediate Format) QP Thông số lượng tử (Quantization Parameter) RBSP (Raw Byte Sequence Payload) RGB Ba màu cơ bản màu đỏ/Xanh/Lam (Red/Green/Blue) RLC Mã hoá dọc chiều dài (Run Length Coding) RSVP Giao thức dành riêng tài nguyên mạng (Resource Reservation Protocol) RTP Giao thức truyền tải thời gian thực (Real Time Transport Protocol) SDTV Truyền hình tiêu chuẩn ( Standard Televison) SMIL Ngôn ngữ tích hợp Multimedia đồng bộ (Synchronized Multimedia Integration Language) SRC Điều khiển tốc độ bit biến đổi được ( Scalable Rate Control) TSS Thuật toán tìm ba bước (Three-Step search) UMTS (Universal Mobile Telecommications System) VCL Lớp mã hóa Video (Video Coding Layer) VLC Mã có chiều dài thay đổi (Variable Length Code) VO Đối tượng Video (Video Object) VOP Đối tượng mặt phẳng Video (Video Object Plane) YCbCr Độ chói, màu lam, màu đỏ (Luminance, Blue chrominance, Red chrominance) ISO Tổ chức quốc tế về tiêu chuẩn chất lượng (International Organization for Standardization) IEC Ủy ban kỹ thuật điện quốc tế (International Electro-technical Commission) JTC1 Ủy ban kỹ thuật 1 (Joint Technical Committee 1) SC29 Ủy ban phụ 29 (Sub-committee 29) WG11 Nhóm làm việc 11( Work Group 11) LỜI MỞ ĐẦU Để có thể đi sâu vào nghiên cứu chuẩn nén MPEG-4 H.264/AVC, thì chúng ta cần nắm được các thuật ngữ, các kỹ thuật cần thiết cho việc nén tín hiệu, cũng như là các ưu nhược điểm của các chuẩn nén trước đó đã mang lại.Vì đây là một đề tài lý thuyết, nên bước quan trọng nhất của quá trình làm Đồ án tốt nghiệp là tìm kiếm tài liệu và tổng hợp nó thành một chuỗi các kiến thức liên tục tránh lang man và yếu tố thuyết phục người tham khảo cũng rất quan trọng, do đó bên cạnh trình bày chi tiết về cách thức nén, em đã cố gắng mô phỏng một phần ưu điểm của chuẩn nén này nhằm góp phần sinh động cho đề tài. TỔ CHỨC ĐỒ ÁN Đồ án được trình bày thành 6 chương và 1 phụ lục. Chương I: Trình bày cơ sở về nén tín hiệu video, các thông số đặc trưng của tín hiệu số và quá trình biến đổi tín hiệu màu, phân loại các nguyên lý nén. Chương II: Trình bày các kỹ thuật được sử dụng trong nén Video, các phép biến đổi và các kỹ thuật mã hóa, các tiêu chuẩn đáng giá chất lượng ảnh nén MSE, PSNR, MAE,SAE … Chương III: Trình bày các chuẩn nén thuộc họ MPEG, cấu trúc dòng bit, các ưu điểm đã đạt được. Chương IV: Cũng là chương quan trọng nhất, trình bày chuẩn nén tiên tiến nhất hiện nay: MPEG-4 H.264/AVC, các đặc tính nổi bật và các kỹ thuật mới trong chuẩn nén này. Chương V: Các ứng dụng của MPEG-4 H.264/AVC trong thực tế và tương lai. Chương VI: Mô phỏng một phần quá trình nén và giải nén của MPEG-4 H.264/AVC, mô phỏng kiểu mã hóa tiên tiến như bù chuyển động với kích thước 4x4, sử dụng bảng lượng tử vô hướng 52 giá trị… Tuy nhiên, do kinh nghiệm còn hạn chế, đồng thời MPEG-4 H.264/AVC là một kỹ thuật còn trong giai đoạn nghiên cứu và phát triển, nên chắc chắn Đồ án sẽ không tránh khỏi sai sót, kính mong Quý Thầy Cô, và bạn bè đồng nghiệp đóng góp ý kiến nhằm hoàn thiện tốt Đồ án tốt nghiệp này. CƠ SỞ VỀ NÉN TÍN HIỆU VIDEO SỰ CẦN THIẾT CỦA NÉN TÍN HIỆU Một tín hiệu video số thường chứa một lượng lớn dữ liệu, do đó sẽ gặp rất nhiều khó khăn trong việc lưu trữ và truyền đi trong một băng thông kênh truyền hạn chế. Với sự phát triển của khoa học kỹ thuật, ngày nay đã sản xuất được bộ cảm biến màu có độ phân giải lên đến 16 triệu pixel tương đương với một bức ảnh có độ phân giải 4096x4096 pixels, nhưng thực tế ứng dụng cần độ phân giải cao nhất hiện nay cũng chỉ dùng lại ở 1920x1080 pixel, do đó để có thể tiết kiệm không gian lưu trữ và băng thông kênh truyền thì cần nén tín hiệu. Quá trình nén ảnh thực hiện được là do thông tin trong bức ảnh có tổ chức, có trật tự, vì vậy nếu xem xét kỹ tính trật tự, cấu trúc ảnh sẽ phát hiện và loại bỏ được các lượng thông tin dư thừa, chỉ giữa lại các thông tin quan trọng nhằm giảm số lượng bit khi lưu trữ cũng như khi truyền mà vẫn đảm bảo tính thẩm mỹ của bức ảnh. Tại đầu thu, bộ giải mã sẽ tổ chức, sắp xếp lại được bức ảnh xấp xỉ gần chính xác so với ảnh gốc nhưng vẫn đảm bảo thông tin cần thiết. Tín hiệu video thường chứa đựng một lượng lớn các thông tin dư thừa, chúng thường được chia thành 5 loại như sau: Có sự dư thừa thông tin về không gian: giữa các điểm ảnh lân cận trong phạm vi một bức ảnh hay một khung video, còn gọi là thừa tĩnh bên trong từng frame. Có sự dư thừa thông tin về thời gian: giữa các điểm ảnh của các khung video trong chuỗi ảnh video, còn gọi là thừa động giữa các frame Có sự dư thừa thông tin về phổ: giữa các mẫu của các dữ liệu thu được từ các bộ cảm biến trong camera, máy quay… Có sự dư thừa do thống kê: do bản thân của các ký hiệu xuất hiện trong dòng bit với các xác suất xuất hiện không đồng đều. Có sự dư thừa tâm thị giác: thông tin không phù hợp với hệ thống thị giác con người, những tần số quá cao so với cảm nhận của mắt người. Ưu điểm của việc nén tín hiệu: Tiết kiệm băng thông kênh truyền ( trong thời gian thực hoặc nhanh hơn). Kéo dài thời giản sử dụng của thiết bị lưu trữ, giảm chi phí đầu tư cho thiết bị lưu trữ. Giảm dung lượng thông tin mà không làm mất tính trung thực của hình ảnh. Có nhiều phương pháp nén tín hiệu, phương pháp nén bằng cách số hóa tín hiệu vẫn tỏ ra hữu hiệu trong mọi thời đại, một mặt nó có thể làm giảm lượng thông tin không quan trọng một cách đáng kể, mặt khác nó còn giúp cho tín hiệu được bảo mật hơn. QUÁ TRÌNH SỐ HÓA TÍN HIỆU Quá trình số hoá tín hiệu tương tự, bao gồm quá trình lọc trước (prefiltering), lấy mẫu, lượng tử và mã hoá minh họa như hình I.1. Quá trình lọc trước nhằm loại bỏ các tần số không cần thiết ở tín hiệu cũng như nhiễu, bộ lọc này còn gọi là bộ lọc chống nhiễu xuyên kênh Aliasing. LẤY MẪU Thực chất đây là một phép toán rời rạc hay là một phép điều biên xung PAM và được thực hiện bằng các mạch Op-amp có cực khiển strobe. Nó tạo ra giá trị tín hiệu tương tự tại một số hữu hạn các giá trị có biến rời rạc gọi là các mẫu. Các mẫu được lấy cách đều nhau gọi là chu kỳ lấy mẫu. Tần số lấy mẫu phải thoả mãn định lý Nyquist-Shannon : Trong đó: + fs là tần số lấy mẫu. + fmax là tần số cực đại của phổ tín hiệu tương tự. LƯỢNG TỬ HÓA. Quá trình lượng tử là quá trình chuyển một xung lấy mẫu thành một xung có biên độ bằng mức lượng tử gần nhất hay nói cách khác là lượng tử chuyển đổi các mức biên độ của tín hiệu đã lấy mẫu sang một trong các giá trị hữu hạn các mức nhị phân. Lượng tử hoá biến đổi tín hiệu liên tục theo thời gian thành tín hiệu có biên độ rời rạc, nhằm làm giảm ảnh hưởng của tạp âm trong hệ thống, hạn chế các mức cho phép của tín hiệu lấy mẫu và chuẩn bị truyền tín hiệu gốc từ tương tự sang số. Giá trị thập phân của các mẫu sau khi lượng tử hoá sẽ được biểu diễn dưới dạng số nhị phân n bit (N= 2n), với n là độ phân giải lượng tử hoá, n càng lớn thì độ chia càng mịn, do đó độ chính xác càng cao. Do làm tròn các mức nên tín hiệu bị méo dạng do sai số lượng tử gọi là méo lượng tử, tỷ số tín hiệu trên méo lượng tử (S/N) được xác định bởi: Maõ hoaù tín hieäu Tín hieäu ñöôïc laáy maãu Xung laáy maãu Tín hieäu goác t t t t 1000 0001 0000 TS chu kyø laáy maãu Hình I.1: Sô ñoà quaù trình taïo tín hieäu soá. Lượng tử hóa có hai loại: Lượng tử tuyến tính: phép nén tín hiệu theo quy luật đường cong đồng đều, bước lượng tử bằng nhau. Lượng tử phi tuyến: phép nén tín hiệu theo quy luật đường cong không đồng đều, tập trung nhiều mức lượng tử ở những vùng tín hiệu nhỏ. Trong kỹ thuật nén ảnh, nén video thì loại lượng tử phi tuyến được dùng nhiều hơn vì nó giảm dung lượng đến mức tối đa với độ méo lượng tử có thể chấp nhận được. MÃ HÓA Là quá trình thay thế mỗi mức điện áp cố định sau khi lượng tử bằng một dãy nhị phân gọi là từ mã. Tất cả các từ mã đều chứa số xung nhị phân cố định và được truyền trong khoảng thời gian giữa 2 thời điểm lấy mẫu cạnh nhau. Bộ mã được sử dụng để tái tạo các xung nhị phân hoặc các từ mã từ các giá trị đã lượng tử xuất hiện ở đầu ra của bộ lượng tử hoá. TỐC ĐỘ BIT VÀ THÔNG LƯỢNG KÊNH TRUYỀN TÍN HIỆU SỐ TỐC ĐỘ BÍT Tốc độ bit là số lượng bit được truyền đi hay lưu trữ trong một đơn vị thời gian. (bit/s) Trong đó : +là tần số lấy mẫu (Hz). + n là số bit nhị phân trong một ký hiệu. + C là tốc độ bit (bps). THÔNG LƯỢNG KÊNH TRUYỀN Là tốc độ số liệu cực đại có thể truyền được trên kênh truyền có độ rộng băng tần B. (bps) Trong đó + C là tốc độ bit (bps) + là tỷ số tín hiệu trên nhiễu trắng. + B là băng thông kênh truyền (Hz). Tốc độ bit càng lớn thì tín hiệu tương tự khôi phục lại càng trung thực tuy nhiên nó sẽ là cho dung lượng lưu trữ và băng thông kênh truyền càng lớn. Trong thực tế để truyền tín hiệu có tốc độ bit là C (bps) thì cần băng thông kênh truyền là: (Hz) Ví dụ: với n = 4, fs = 44,1Khz thì: Tốc độ truyền thông tin là : C = n x fs = 4 x 44,1 = 176,3.103 bits/s Và độ rộng băng tần là = QUÁ TRÌNH BIẾN ĐỔI TÍN HIỆU MÀU R, G, B Hình I.2. Quá trình biến đổi màu Hình II.2. Minh hoïa quaù trình bieán ñoåi maøu. Một bức ảnh được chuyển từ RGB sang YUV nhằm giảm dung lượng lưu trữ cũng như truyền đi, trong quá trình giải mã, trước khi hiển thị ảnh thì nó được biến đổi ngược lại thành RGB. Công thức minh họa quá trình biến đổi như sau: (1) Với , kb = 0.114, kr = 0.299, khi thế vào công thức (1) thì ta được: Nên ta có ma trận biến đổi từ RGB sang YUV như sau: Thực hiện tương tự ta suy ra được ma trận biến đổi từ YUV sang RGB như sau: CÁC TIÊU CHUẨN LẤY MẪU TÍN HIỆU VIDEO SỐ Kiểu lấy mẫu cho ảnh video cũng là một vấn đề khá quan trọng của kỹ thuật nén ảnh. Một số kiểu lấy mẫu phổ biến minh họa như hình I.3 và có đặc điểm như sau: Tốc độ lấy mẫu 4:1:1 - tần số lấy mẫu tín hiệu chói là 13,5MHz, và mỗi tín hiệu hiệu màu là 3,375MHz. Tốc độ lấy mẫu 4:2:2 - tần số lấy mẫu tín hiệu chói là 13,5MHz, và mỗi tín hiệu hiệu màu là 6,75MHz. Tốc độ lấy mẫu 4:4:4 - cả 3 thành phần có cùng độ phân giải, nghĩa là tần số lấy mẫu tín hiệu chói là 13,5MHz, và mỗi tín hiệu hiệu màu là 13,5MHz. Tốc độ lấy mẫu 4:2:0 - là kiểu phổ biến, tần số lấy mẫu tín hiệu chói là 13,5MHz, và mỗi tín hiệu hiệu màu là 6,75MHz theo cả 2 chiều Ví dụ : Một bức ảnh có độ phân giải 720 × 576 pixels Độ phân giải của thành phần Y là 720 × 576 pixels được mã hóa bằng từ mã 8 bits. Nếu sử dụng kiểu lấy mẫu 4:4:4 thì độ phân giải của thành phần Cb, Cr là 720 × 576 mẫu cũng được mã hóa bằng từ mã 8 bits. => Vậy tổng số bits sử dụng để mã hóa bức ảnh là 720 × 576 × 8 × 3 = 9 953 280 bits Nếu sử dụng kiểu lấy mẫu 4:2:0 thì độ phân giải của thành phần Cb, Cr là 360 × 288 mẫu, cũng được mã hóa bằng từ mã 8 bits. => Vậy tổng số bits sử dụng là (720 × 576 × 8) + (360 × 288 × 8) × 2 = 4 976 640 bits Hình I.3. Các tiêu chuẩn lấy mẫu phổ biến Trong kiểu 4:4:4, tổng số mẫu cần thiết là 12 mẫu, do đó tổng số bit là 12 × 8 = 96 bits, và trung bình là 96/4 = 24 bits/pixel Trong kiểu 4:2:0, tín hiệu được quét xen kẽ, do đó chỉ cần thiết 6 mẫu, 4 mẫu cho thành phần Y, 1 mẫu cho thành phần Cb, 1 mẫu cho thành phần Cr, do đó tổng số bits cần thiết là 6 × 8 = 48 bits, và trung bình là 48/4 = 12 bits/pixel. Ta thấy kiểu lấy mẫu 4:2:0 giảm một ½ số lượng bits so với 4:4:4, đó cũng chính là lý do mà kiểu lấy mẫu này được sử dụng phổ biến. MÔ HÌNH NÉN TÍN HIỆU VIDEO Nén thời gian Nén không gian Lưu trữ ảnh Bộ mã hóa ENTROPY Hình I.4. Sơ đồ khối nén tín hiệu Video cơ bản Các khối chính là: - Khối nén dư thừa thời gian. Dự đoán chuyển động Bù chuyển động - Khối nén dư thừa theo không gian. Biến đổi DCT, DWT Lượng tử hóa Xắp xếp lại trật tự và mã hóa Entropy NÉN TÍN HIỆU VIDEO Tín hiệu video có dải phổ nằm trong khoảng 0 -> 6Mhz, do thành phần tần số cao chỉ xuất hiện ở các đường viền của hình ảnh nên năng lượng phổ rất ít tập trung ở miền tần số cao mà chủ yếu tập trung ở miền tần số thấp. Điều đó có nghĩa là số lượng bit ở miền tần số thấp sẽ nhiều hơn ở miền tần số cao. Trong các hệ thống nén, tỉ số nén chính là tham số quan trọng đánh giá khả năng nén của hệ thống, ta gọi n1, n2 là số lượng bit của tín hiệu trước và sau khi nén nên ta có công thức như sau: Tỷ số nén sẽ là Phần trăm nén hay còn gọi là độ dư thừa dữ liệu tương đối. Nếu n1= n2 thì ta có C =1, và R = 0 nghĩa là không có sự dư thừa dữ liệu. Nếu n2<<n1 thì C, R, ta nói rằng có sự dư thừa dữ liệu lớn. Ví dụ : n1 = 100Mb/s, n2 = 20Mb/s thì C = 5:1, R = 80%. Tức là ảnh có sự dư thừa lớn, hiệu quả nén đạt 80%. LƯỢNG TIN TRUNG BÌNH (ENTROPY) Trước khi nghiên cứu các phương pháp nén, ta cần đánh giá lượng thông tin chủ yếu được chứa đựng trong hình ảnh, từ đó xác định dung lượng tối thiểu cần sử dụng để miêu tả, truyền tải thông tin về hình ảnh. Thông tin được ký hiệu là ai và có xác suất p(ai) thì lượng tin được xác định theo công thức sau: Theo công thức trên ta thấy lượng tin chứa đựng trong một hình ảnh sẽ tỉ lệ nghịch với khả năng xuất hiện của ảnh đó, nghĩa là sự kiện ít xảy ra sẽ chứa đựng nhiều thông tin hơn và bằng tổng số lượng thông tin của từng phần tử ảnh. Gọi lượng tin trung bình của hình ảnh là H(X) và được tính b

Các file đính kèm theo tài liệu này:

  • docLVver2.doc
  • yuvhall.yuv
  • mmain.m
  • mmain1.m
  • mmov2yuv.m
  • docNV.doc
  • docNX.doc
  • mplaymov.m
  • mplotvector.m
  • mprogressbar.m
  • mPSNR.m
  • msec2timestr.m
  • myuv2mov.m
Tài liệu liên quan