Luận văn Về nguyên lý nhân tử lagrange

Trong cuộc sống, ai cũng mong muốn công việc hàng ngày của mình được hoàn thành một cách tốt nhất. Ai cũng tự đặt ra hai câu hỏi chính: Làm thế nào để công việc hoàn thành tốt nhất, và khi tốt nhất thì được cái gì? Như vậy, chẳng qua mọi người cũng phải giải các bài toán tối ưu của mình theo một nghĩa nào đó. Một vấn đề quan trọng nhất đặt ra cho mỗi bài toán tối ưu là: Với điều kiện nào, bài toán có nghiệm, và nếu có nghiệm điều gì sẽ xảy ra. Tất nhiên, điều kiện càng đơn giản thì việc tìm nghiệm càng dễ. Biết được điều gì xảy ra nếu có lời giải, thì việc tìm ra lời giải càng dễ dàng hơn

pdf57 trang | Chia sẻ: vietpd | Ngày: 03/09/2013 | Lượt xem: 1501 | Lượt tải: 3download
Bạn đang xem nội dung tài liệu Luận văn Về nguyên lý nhân tử lagrange, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
1ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM PHẠM PHÚC LONG VỀ NGUYÊN LÝ NHÂN TỬ LAGRANGE Chuyên ngành: Giải tích Mã số: 60 46 01 LUẬN VĂN THẠC SỸ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS. TS. TRƯƠNG XUÂN ĐỨC HÀ Thái Nguyên- Năm 2010 Số hóa bởi Trung tâm Học liệu - Đại học Thái Nguyên 2MỤC LỤC Mở đầu: ................................................................................................... 2 Chương I. NGUYÊN LÝ NHÂN TỬ LAGRANGE CHO BÀI TOÁN TỐI ƯU TRƠN. 1.1 Một số kiến thức chuẩn bị .................................................................5 1.1.1 Khả vi Gateaux và khả vi Frechet .................................................5 1.1.2 Định lý Hahn-Banach, bổ đề về linh hóa tử ..................................9 1.1.3 Định lý Ljusternik, định lý hàm ẩn .............................................10 1.2 Điều kiện cần đủ cho bài toán tối ưu trơn ......................................12 1.2.1 Phát biểu bài toán ........................................................................12 1.2.2 Trường hợp hữu hạn chiều ..........................................................17 1.2.3 Trường hợp tổng quát .................................................................27 Chương II. NGUYÊN LÝ NHÂN TỬ LAGRANGE CHO BÀI TOÁN TỐI ƯU LỒI. 2.1 Một số kiến thức cơ bản của giải tích lồi ........................................31 2.1.1 Tập lồi .........................................................................................31 2.1.2 Hàm lồi .......................................................................................32 2.1.3 Tập Affine ...................................................................................34 2.1.3 Các định lý tách ...........................................................................35 2.1.4 Dưới vi phân của hàm lồi ............................................................36 2.1.6 Định lý cơ bản về dưới vi phân của tổng các hàm lồi ...................38 2.2 Điều kiện cần đủ cho bài toán tối ưu lồi .........................................43 2.2.1 Bài toán không có ràng buộc .......................................................44 2.2.2 Bài toán với ràng buộc đẳng thức ................................................44 2.2.3 Bài toán với ràng buộc bất đẳng thức ..........................................47 KẾTLUẬN ..............................................................................................55 TÀI LIỆU THAMKHẢO ......................................................................56 Số hóa bởi Trung tâm Học liệu - Đại học Thái Nguyên 3MỞ ĐẦU Trong cuộc sống, ai cũng mong muốn công việc hàng ngày của mình được hoàn thành một cách tốt nhất. Ai cũng tự đặt ra hai câu hỏi chính: Làm thế nào để công việc hoàn thành tốt nhất, và khi tốt nhất thì được cái gì? Như vậy, chẳng qua mọi người cũng phải giải các bài toán tối ưu của mình theo một nghĩa nào đó. Một vấn đề quan trọng nhất đặt ra cho mỗi bài toán tối ưu là: Với điều kiện nào, bài toán có nghiệm, và nếu có nghiệm điều gì sẽ xảy ra. Tất nhiên, điều kiện càng đơn giản thì việc tìm nghiệm càng dễ. Biết được điều gì xảy ra nếu có lời giải, thì việc tìm ra lời giải càng dễ dàng hơn. Ta biết trong bài toán tối ưu có hai đối tượng quan trọng: Tập chấp nhận được (hay tập ràng buộc) và Hàm mục tiêu xác định trên tập đó. Vậy thì khi xét đến điều kiện để tồn tại nghiệm tối ưu, ta phải quan tâm tới các điều kiện, tính chất của hai đối tượng ấy. Để nghiên cứu sự tồn tại nghiệm và tìm ra phương pháp giải nghiệm, người ta thường phân loại các bài toán theo cấu trúc của tập chấp nhận được và tính chất hàm mục tiêu của bài toán. Trong luận văn này, tác giả đề cập tới hai loại bài toán chính sau: 1. Bài toán tối ưu trơn với ràng buộc đẳng thức. Cụ thể: Cho X , Y là các không gian Banach, hàm f xác định trên X , ánh xạ F : X −→ Y . Bài toán: { f (x)−→ in f F(x) = 0. được gọi là bài toán tối ưu trơn với ràng buộc đẳng thức nếu hàm f và ánh xạ F thỏa mãn tính trơn. 2. Bài toán tối ưu lồi. Cụ thể: Cho X là không gian tôpô tuyến tính lồi địa phương, A ⊂ X là một tập lồi đóng không rỗng. f ,gi : X −→R= R∪{±∞} và h j : X −→R là những hàm affine. Bài toán quy hoạch lồi tổng quát cho dưới dạng Số hóa bởi Trung tâm Học liệu - Đại học Thái Nguyên 4sau:   min f(x) x ∈ A gi(x)≤ 0 (i = 1,2, . . . ,m) h j(x) = 0 ( j = 1,2, . . . , p). Trong giải tích cổ điển, ta đã biết định lý Weierstrass nổi tiếng: “ Một hàm số liên tục trên tập compact luôn đạt cực đại và cực tiểu”. Những mở rộng hay biến dạng khác nhau của định lý này chỉ ra nhiều điều kiện đủ cho sự tồn tại nghiệm của bài toán tối ưu. Khi hàm số khả vi, một điểm là nghiệm tối ưu của bài toán không có ràng buộc, thì đạo hàm của nó tại điểm này phải bằng không. Đó là điều kiện cần tối ưu. Khẳng định này vẫn còn đúng cho hàm lồi với đạo hàm được thay bằng dưới vi phân. Với ý tưởng như vậy, khi nghiên cứu một bài toán tối ưu có ràng buộc, người ta tìm cách đưa nó về một bài toán không có ràng buộc hoặc chỉ có những ràng buộc tương đối đơn giản. Có thể thấy điều đó trong các công trình nghiên cứu của Lagrange về tính biến phân từ cuối thế kỷ XVIII. Đó là: • Xây dựng hàm Lagrange cho bài toán tối ưu. • Tìm các điều kiện để hàm Lagrange đạt cực trị. Chính việc áp dụng rộng rãi nguyên lý nhân tử Lagrange trong các bài toán tối ưu đã khiến tác giả chọn đề tài nghiên cứu này. Luận văn trình bày hệ thống và chi tiết một số điều kiện tối ưu cho các bài toán tối ưu trơn, và bài toán tối ưu lồi được trình bày từ các tài liệu chuyên đề chính [1− 4], và có tham khảo thêm các tài liệu [5− 7]. Các điều kiện này được thể hiện thông qua các nhân tử Lagrange. Luận văn bao gồm: Phần mở đầu, hai chương và phần tài liệu tham khảo. Chương I: Dành để trình bày các kết quả về điều kiện cần đủ của bài toán tối ưu trơn. Đầu tiên chúng ta nhắc lại một số kiến thức về khả vi Gateaux, khả vi Frechet, định lý Ljusternik, định lý hàm ẩn, sau đó trình bày điều kiện cần cấp một và điều kiện cần đủ cấp hai thông qua sự tồn tại của vi phân cấp hai và nhân tử Lagrange. Số hóa bởi Trung tâm Học liệu - Đại học Thái Nguyên 5Chương II: Dành để trình bày các kết quả về điều kiện cần đủ của bài toán tối ưu lồi. Tác giả trình bày một số kiến thức cơ bản về giải tích lồi, định lý Moreau-Rockafellar, và định lý cổ điển Kuhn-Tucker về điều kiện cần và đủ của bài toán tối ưu lồi thông qua sự tồn tại của nhân tử Lagrange tương ứng với dưới vi phân tại điểm đó. Nhân dịp này, tác giả xin bày tỏ lòng biết ơn sâu sắc tới PGS.TS Trương Xuân Đức Hà, người đã trực tiếp giúp đỡ và chỉ bảo tận tình tác giả trong suốt quá trình học tập, nghiên cứu và viết bản luận văn này. Tác giả cũng bày tỏ tình cảm của mình trước sự giúp đỡ, động viên của gia đình, bạn bè, và tập thể học viên cao học Toán K16-ĐHSPTN. Trong quá trình viết luận văn cũng như trong việc xử lý văn bản chắc chắn không tránh khỏi những hạn chế và thiếu sót. Rất mong nhận được sự góp ý của thầy cô, các bạn đồng nghiệp để luận văn được hoàn thiện hơn. Thái Nguyên, tháng 8, năm 2010. Phạm Phúc Long Số hóa bởi Trung tâm Học liệu - Đại học Thái Nguyên 6CHƯƠNG I: NGUYÊN LÝ NHÂN TỬ LAGRANGE CHO BÀI TOÁN TỐI ƯU TRƠN Chương này dành để trình bày các kết quả về điều kiện cần đủ của bài toán tối ưu trơn thông qua sự tồn tại của các nhân tử Lagrange. Những kết quả này được tham khảo từ những tài liệu chuyên đề chính [1−4]. 1.1. Một số kiến thức chuẩn bị. Trong mục này, chúng ta nhắc lại một số khái niệm về khả vi Gateaux, khả vi Frechet, định lý Hahn-Banach, định lý Ljusternik và định lý hàm ẩn. 1.1.1. Khả vi Gateaux và khả vi Frechet. Định Nghĩa 1.1. Cho X , Y là các không gian tôpô tuyến tính, U là lân cận của x ∈ X , ánh xạ F : U −→Y . Ánh xạ F được gọi là khả vi Gateaux tại x nếu tồn tại toán tử tuyến tính liên tục F ′(x) : X −→ Y thỏa mãn: lim t→0 F(x+ th)−F(x)− tF ′(x)h t = 0. ∀h ∈ X . Định Nghĩa 1.2. Cho X , Y là các không gian Banach, U là lân cận của x ∈ X , ánh xạ F : U −→ Y . Ánh xạ F được gọi là khả vi Frechet tại x nếu tồn tại toán tử tuyến tính liên tục F ′(x) : X −→ Y thỏa mãn: lim h→0 F(x+h)−F(x)−F ′(x)h ||h|| = 0. Định Nghĩa 1.3. Cho U là tập con mở trong không gian X , ánh xạ F : X −→ Y với X ,Y là các không gian Banach. Nếu với mọi điểm của tập U , tồn tại đạo hàm F ′(x) và ánh xạ x −→ F ′(x) là liên tục trong không gian L(X ,Y ) trên U thì F gọi là khả vi liên tục trên U , hoặc ánh xạ thuộc lớp C1 trên U . Số hóa bởi Trung tâm Học liệu - Đại học Thái Nguyên 7Định Nghĩa 1.4. Ta nói rằng, ánh xạ F : X −→ Y là chính quy tại điểm x nếu nó khả vi Frechet tại điểm đó, và ImF ′(x) = Y . Định Nghĩa 1.5. Cho hàm số f (x) xác định trên không gian tôpô tuyến tính X . Điểm x ∈ X thỏa mãn f ′(x) = 0 được gọi là điểm dừng. Định Nghĩa 1.6. Cho Ω là miền mở, giới nội trong Rn. Hàm số f : Ω −→ R với x ∈ Ω, x = (x1, . . . ,xn). Giả sử f có các đạo hàm riêng ∂ f∂xi (x), (i = 1, . . . ,n), thì vectơ ( ∂ f ∂x1 (x), . . . , ∂ f ∂xn (x) ) gọi là Gradient của f tại x. Kí hiệu: ∇ f (x) = ( ∂ f ∂x1 (x), . . . , ∂ f ∂xn (x) ) . Ma trận J = ( ∂ f ∂x1 (x), . . . , ∂ f ∂xn (x) ) gọi là Jacobian của f tại x. Nếu ∂ f∂xi (x) có các đạo hàm riêng thứ j với ( j = 1, . . . ,n), đạo hàm riêng này được gọi là đạo hàm riêng cấp hai theo các biến i, j của f tại x, và được kí hiệu là ∂ 2 f ∂xi∂x j (x), i, j = 1, . . . ,n. Ma trận H = ( ∂ 2 f ∂xi∂x j (x) ) , i, j = 1, . . . ,n. được gọi là Hessian của f tại x. Ví Dụ 1.1. Tính khả vi của một số hàm và ánh xạ. 1) Trong R2 hàm f (x1,x2) được cho bởi công thức.{ 1 nếu x1 = x22 0 Trong các trường hợp còn lại. là khả vi Gateaux tại gốc tọa độ. Số hóa bởi Trung tâm Học liệu - Đại học Thái Nguyên 82) Ánh xạ affine. Một ánh xạ A : X −→ Y với X ,Y là các không gian tuyến tính được gọi là affine nếu: A(x) = λ x+a. trong đó a ∈ Y và λ : X −→ Y là ánh xạ tuyến tính. Nếu X ,Y là các không gian Banach, λ là ánh xạ tuyến tính liên tục, thì ánh xạ A là khả vi Frechet tại mọi điểm và A′(x) = λ . Đạo hàm cấp hai của A là: A′′(x) = 0. (điều này được suy ra trực tiếp từ định nghĩa). Nói riêng, đạo hàm Frechet của hàm affine a(x) = 〈x∗,x〉. là a′(x) = x∗ tại ∀x. 3) Hàm Bậc Hai. Cho X là không gian Banach, B(x1,x2) là hàm song tuyến tính liên tục trên X ×X , và Q(x) = B(x,x) là một dạng toàn phương. Về bản chất: Q(x+h) = B(x+h,x+h) = B(x,x)+B(x,h)+B(h,x)+B(h,h) = Q(x)+B(x,h)+B(h,x)+o(||h||), (khi h −→ 0). Do đó hàm Q(x) là khả vi Frechet và: Q′(x)h = B(x,h)+B(h,x). Nói riêng, nếu X là không gian Hilbert thì mọi dạng bậc hai có thể biểu diễn dưới dạng Q(x) = 1 2 〈λ x,x〉, với λ ∈ L(X ,Y ), λ ∗ = λ . Số hóa bởi Trung tâm Học liệu - Đại học Thái Nguyên 9Và Q′(x) = λ x. Trong không gian hilbert, tổng của một dạng bậc hai với một hàm affine K(x) = 1 2 〈λ x,x〉+ 〈x,a〉+α. gọi là hàm bậc hai. Khi đó K′(x) = λ x+a. và K′′(x) = λ . các đạo hàm còn lại bằng không. Đặc biệt, nếu hàm e(x) = 1 2 ||x||2 = 1 2 〈x,x〉. thì e′(x) = x. e′′(x) = I. e′′′(x) = · · ·= 0. 4) Chuẩn trong không gian Hilbert. Hàm số f (x) = ||x|| là khả vi Frechet tại mọi điểm khác không và f ′(x) = x||x||. Tiếp theo chúng ta nhắc lại định lý Hahn-Banach, toán tử liên hợp, và một bổ đề quan trọng đó là, bổ đề về linh hóa tử (annihilator). Số hóa bởi Trung tâm Học liệu - Đại học Thái Nguyên 10 1.1.2. Định lý Hahn-Banach, bổ đề về linh hóa tử. Định Lý 1.1. (Hahn-Banach). Cho X là không gian tôpô tuyến tính, A ⊂ X là tập lồi mở, L ⊂ X là một không gian con rời A. Khi đó, tồn tại một phiếm hàm tuyến tính liên tục x∗ trên X thỏa mãn • 〈x∗,x〉> 0 với ∀x ∈ A. • 〈x∗,x〉= 0 với ∀x ∈ L. Chúng ta chú ý rằng, tập L⊥ = {x∗ ∈ X∗ | 〈x∗,x〉= 0, ∀x ∈ L} được gọi là linh hóa tử của L. Hệ Quả 1.1. Cho L là một không gian con đóng của một không gian tôpô tuyến tính lồi địa phương, thì linh hóa tử của L chứa ít nhất một phần tử khác không. Định Nghĩa 1.7. (Toán tử liên hợp) Cho X ,Y là các không gian tuyến tính lồi địa phương, λ : X −→ Y là toán tử tuyến tính liên tục. Khi đó, toán tử liên hợp λ ∗ : Y ∗ −→ X∗ được xác định bởi 〈λ ∗y∗,x〉= 〈y∗,λ x〉 với ∀y∗ ∈ Y ∗, x ∈ X . Bổ Đề 1.1. (Bổ đề về linh hóa tử) Cho X ,Y là các không gian Banach, λ : X −→ Y là toán tử tuyến tính liên tục thỏa mãn Im λ = Y . Khi đó (Ker λ )⊥ = Im λ ∗. Định Lý 1.2. Cho ánh xạ F : X −→Rn và F(x) = ( f1(x), . . . , fn(x)) là khả vi Frechet tại x0. Ánh xạ F là chính quy tại x0 nếu và chỉ nếu các vectơ f ′1(x0), . . . , f ′n(x0) là độc lập tuyến tính. Số hóa bởi Trung tâm Học liệu - Đại học Thái Nguyên 11 Để chứng minh điều kiện tối ưu của bài toán trơn với ràng buộc đẳng thức, ta cần tới các định lý quan trọng sau. 1.1.3. Định lý Ljusternik, Định lý hàm ẩn. Giả sử X là không gian Banach, tập M ⊂ X . Định Nghĩa 1.8. (Vectơ tiếp xúc) Một vectơ x ∈ X gọi là tiếp xúc với tập M tại điểm x0, nếu tồn tại số ε > 0 và ánh xạ r : [0,ε]−→ X t 7−→ r(t) thỏa mãn x0+ tx+ r(t) ∈ M, ∀t ∈ [0,ε] trong đó ||r(t)|| t −→ 0 khi t −→ 0. Nhận Xét 1.1. Tập tất cả các vectơ tiếp xúc với tập M tại x0 là một hình nón đóng, được gọi là nón tiếp tuyến của M tại x0 và được kí hiệu là TM(x0). Trong nhiều trường hợp, TM(x0) là một không gian con và được gọi là không gian tiếp xúc với tập M tại x0. Do 0 ∈ TM(x0) nên TM(x0) 6= /0 Định Lý 1.3. (Định Lý Ljusternik) Giả sử X ,Y là các không gian Banach,U là một lân cận của điểm x0 ∈X . Ánh xạ F : U −→ Y . Giả thiết rằng, F khả vi liên tục theo nghĩa Frechet tại x0 và Im F ′(x0) = Y Đặt M = {x ∈U : F(x) = F(x0)}. Khi đó, không gian tiếp xúc với tập M tại x0 trùng với Ker F ′(x0), tức là TM(x0) = Ker F ′(x0). Số hóa bởi Trung tâm Học liệu - Đại học Thái Nguyên 12 Đồng thời, tồn tại lân cậnU ′ ⊂U của x0, số K > 0 và ánh xạ ξ −→ x(ξ ) từ U ′ vào X sao cho: với mọi ξ ∈U ′ F (ξ + x(ξ ))= F(x0), ||x(ξ )|| ≤ K ||F(ξ )−F(x0)|| . Nhận Xét 1.2. Thực ra, không cần các điều kiện của định lý (1.3) mà chỉ dựa vào định nghĩa của vectơ tiếp xúc với tập M tại x0, ta có thể chứng minh được: TM(x0)⊂ Ker F ′(x0). Ý nghĩa thực tế của định lý Ljusternik là chuyển công việc tìm không gian tiếp xúc của một tập (điều mà không dễ dàng tìm được theo định nghĩa) về việc tìm hạch của một toán tử. Giả sử ta có hệ gồm m phương trình với n biến số: hi(x) = 0, i = 1, . . . ,m và m ≤ n. Nếu cố định (n−m) ẩn, thì hệ phương trình được giải với m ẩn còn lại. Do đó, nếu ta chọn m biến đầu tiên là x1,x2, . . . ,xm và giả sử rằng các biến này có thể được biểu diễn thông qua các biến còn lại dưới dạng xi = φi(xm+1,xm+2, . . . ,xn), i = 1, . . . ,m. các hàm φi (nếu tồn tại) được gọi là các hàm ẩn. Định lý 1.4. (Định lý hàm ẩn). Cho x0 = (x01, . . . ,x 0 n) là một điểm trong R n thỏa mãn: 1. Các hàm số hi ∈Cp, i = 1, . . . ,m, p ≥ 1 trong lân cận của x0. 2. hi(x0) = 0, i = 1, . . . ,m. 3. Ma trận Jacobian cấp m×m J =   ∂h1(x0) ∂x1 · · · ∂h1(x0) ∂xm... ... ∂hm(x0) ∂x1 · · · ∂hm(x0) ∂xm   là không suy biến. Số hóa bởi Trung tâm Học liệu - Đại học Thái Nguyên 13 Khi đó, có lân cận của xˆ0 = (x0m+1, . . . ,x 0 n) ∈ Rn−m thỏa mãn: với xˆ = (xm+1, . . . ,xn) trong lân cận này thì tồn tại các hàm φi(xˆ), i = 1, . . . ,m sao cho 1. φi ∈Cp. 2. x0i = φi(xˆ0), i = 1, . . . ,m. 3. hi(φi(xˆ),φ2(xˆ), . . . ,φm(xˆ), xˆ) = 0, i = 1, . . . ,m. Định lý hàm ẩn sẽ giúp ta chứng minh cách xác định không gian tiếp xúc của mặt ràng buộc sẽ được trình bày ở phần sau. 1.2. Điều kiện cần đủ cho bài toán tối ưu trơn . Trong mục này chúng ta trình bày điều kiện cần cấp một và điều kiện cần đủ cấp hai thông qua sự tồn tại của vi phân cấp hai và nhân tử La- grange. Đây chính là trường hợp ta hay gặp trong thực tiễn. 1.2.1. Phát biểu bài toán. Cho X , Y là các không gian Banach, hàm f xác định trên X , ánh xạ F : X −→ Y . Xét bài toán: (P1) { f (x)−→ in f (1.1) F(x) = 0 (1.2) bài toán (P1) được gọi là bài toán tối ưu trơn với ràng buộc đẳng thức nếu hàm f và ánh xạ F thỏa mãn tính trơn. Trong đó: • F(x) = 0 gọi là ràng buộc đẳng thức. • Ω = {x ∈ X : F(x) = 0} gọi là tập chấp nhận được. Hàm Lagrange của bài toán (P1) được thiết lập như sau L(x,λ0,y∗) = λ0 f (x)+ 〈y∗,F(x)〉 với λ0 ∈ R, y∗ ∈ Y ∗. Số hóa bởi Trung tâm Học liệu - Đại học Thái Nguyên 14 trong đó λ0 và y∗ gọi là các nhân tử Lagrange. Để có một cái nhìn trực quan, chúng ta xét bài toán trong trường hợp cụ thể sau (P2) { min f (x,y) h(x,y) = 0 x,y ∈ R. trong đó các hàm số f ,h khả vi liên tục tới cấp 2, và f là chính quy. Chú ý rằng, nếu f và h là các hàm tuyến tính, thì bài toán trên chính là bài toán quy hoạch tuyến tính. Khi đó, ta có thể giải quyết bài toán bằng các thuật toán đơn hình. Vì vậy, chúng ta chỉ xét trường hợp các hàm này là phi tuyến. Ràng buộc h(x,y) = 0 xác định một đường cong như hình 1 Hình 1. Lấy vi phân của phương trình h(x,y) = 0 với ẩn x, ta có ∂h ∂x + ∂h ∂y . dy dx = 0. (1.3) Tiếp tuyến của đường cong là T (x,y) = ( 1, dy dx ) . và gradient của đường cong là ∇h = (∂h ∂x , ∂h ∂y ) . Vì vậy, phương trình (1.3) có nghĩa là: T.∇h = 0. Nói cách khác, tiếp tuyến của đường cong phải vuông góc với gradient tại mọi điểm. Số hóa bởi Trung tâm Học liệu - Đại học Thái Nguyên 15 Giả sử ta đang ở một điểm trên đường cong, để điểm này nằm trên đường cong thì bất kì chuyển động nào cũng phải theo tiếp tuyến T . Để tăng hoặc giảm f (x,y) thì chuyển động dọc theo đường cong phải có một thành phần dọc theo gradient của f . Tức là ∇ f .T 6= 0. Hình 2. Tại điểm cực trị, chuyển động lúc này là đặc biệt. Khi đó, T trực giao với ∇ f , nói cách khác ∇ f .T = 0. Như vậy, T trực giao với cả gradient ∇ f và ∇h tại điểm cực trị, điều đó có nghĩa rằng ∇ f và ∇h phải song song với nhau. Do đó, tồn tại λ ∈ R sao cho ∇ f +λ ∇h = 0. (1.4) Hình (3)minh họa cho điều kiện (1.4) bằng cách chồng lên đường cong h(x,y) = 0 họ các đường mức của hàm f (x,y), đó là tập các đường cong f (x,y) = c, trong đó c là số thực bất kì trong khoảng biến thiên của f . Trong hình (3) ta có c5 > c4 > c3 > c∗ > c1. Nếu di chuyển dọc theo đường cong sẽ cho kết quả tăng hoặc giảm giá trị của f . Hãy tưởng tượng, một điểm di chuyển trên đường cong h(x,y) từ (x1,y1) đến (x2,y2). Ban đầu, chuyển động có một thành phần dọc theo hướng của −∇ f dẫn đến giảm giá trị của f . Giá trị này nhỏ dần, khi di chuyển tới (x∗,y∗), chuyển động là trực giao với gradient. Từ điểm này, chuyển động bắt đầu có một thành phần dọc theo hướng gradient ∇ f , như vậy giá trị của f tăng lên. Do đó, tại (x∗,y∗) hàm f đạt cực tiểu địa phương. Chuyển động này theo hướng tiếp tuyến của đường cong h(x,y) = 0, đó là trực giao Số hóa bởi Trung tâm Học liệu - Đại học Thái Nguyên 16 Hình 3. với gradient ∇h. Như vậy, tại (x∗,y∗) thì hai gradient ∇ f và ∇h phải cộng tuyến với nhau. Đây chính là những gì mà phương trình (1.4) đã thể hiện. Cho c∗ là đường mức mà tại đó hàm f đạt cực tiểu địa phương tại (x∗,y∗), rõ ràng hai đường cong f (x,y) = c∗ và h(x,y) = 0 tiếp xúc nhau tại (x∗,y∗). Giả sử ta tìm được tập S các điểm thỏa mãn hệ phương trình{ h(x,y) = 0 ∇ f +λ ∇h = 0. (1.5) Khi đó, tập S chứa các điểm cực trị của hàm f đối với ràng buộc h(x,y) = 0. Hệ phương trình trên là hệ phi tuyến với các biến số x,y,λ và ta có thể giải quyết bằng nhiều phương pháp. Hàm Lagrange của bài toán (P2) có dạng L(x,y,λ ) = f (x,y)+λ h(x,y). ∇L=   ∂ f ∂x +λ ∂h ∂x∂ f ∂y +λ ∂h ∂y h(x,y)   T = (∇ f +λ ∇h, h). Suy ra ∇L= 0 do hệ phương trình phi tuyến (1.5). Số hóa bởi Trung tâm Học liệu - Đại học Thái Nguyên 17 Giá trị λ gọi là nhân tử Lagrange. Phương pháp xây dựng hàm Lagrange và thiết lập để các gradient của nó bằng không, gọi là phương pháp nhân tử Lagrange. Ví Dụ 1.2. Tìm các giá trị cực trị của hàm f (x,y) = xy với ràng buộc h(x,y) = x 2 8 + y2 2 −1 = 0. Giải Đầu tiên, ta xây dựng hàm Lagrange và tìm gradient của nó. L(x,y,λ ) = xy+λ (x 2 8 + y2 2 −1). ∇L(x,y,λ ) =   y+ λx 4 x+λ y x2 8 + y2 2 −1  =
Tài liệu liên quan