Luận án Đặc điểm phage T4 và ứng dụng

Thực khuẩn thể (phage) là một thể “ăn” vi khuẩn, hay nói cho đúng: là virus của vi khuẩn, nó có thể gây bệnh và tiêu diệt vi khuẩn. Thực khuẩn thể không phải là phát hiện mới. Nó đã được biết đến từ lâu do Twort phát hiện đầu tiên và 2 năm sau (1917) được d’He’relle nghiên cứu kỹ.

docx27 trang | Chia sẻ: vietpd | Lượt xem: 2855 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Luận án Đặc điểm phage T4 và ứng dụng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
TRƯỜNG ĐẠI HỌC CÔNG NGHIỆP THỰC PHẨM 09 CAO ĐẲNG SINH HỌC LUẬN ÁN VI SINH Thành viên Võ Mạnh Thanh TUấn TRần Quốc BÌnh Huỳnh Quốc Việt Trần Thị Mỹ DIệu Lê Trọng NHàn HUỳnh Diệp BẢo LÂm Mục lục HÌnh thái- cấu trúc 5 Sự sắp xếp của các gene trong nhiễm sắc thể phage 14 Lập bản đồ cấu trúc tinh vi vùng rII của phage T4 15 Chu trình tiềm tan ở Phage T4 18 Quá trình hoạt động của virus T4 –Sinh trưởng và phát triển ( chu trình sinh tan) 20 Ứng dụng 24 Tài liệu Tham Khảo 26 VÀI NÉT LỊCH SỬ Thực khuẩn thể (phage) là một thể “ăn” vi khuẩn, hay nói cho đúng: là virus của vi khuẩn, nó có thể gây bệnh và tiêu diệt vi khuẩn. Thực khuẩn thể không phải là phát hiện mới. Nó đã được biết đến từ lâu do Twort phát hiện đầu tiên và 2 năm sau (1917) được d’He’relle nghiên cứu kỹ. Từ nhiều công trình nghiên cứu và thực nghiệm d’He’relle nhận xét: nguyên nhân của hiện tượng thực khuẩn thể là một loại vi sinh vật rất nhỏ, có khả năng gây bệnh cho vi khuẩn với triệu chứng chính là dung giải. Sau đó, càng ngày càng tìm ra nhiều loại thực khuẩn thể khác nhau tương ứng với từng loại vi khuẩn như: phẩy khuẩn tả, thực khuẩn thương hàn, dịch hạch, các tụ cầu khuẩn, liên cầu, Brucella, Mycobacteria. Về bản chất đó là sự tan vỡ của tế bào vi khuẩn, do tác dụng của một loại thực khuẩn thể tương ứng. Thí dụ trong môi trường lỏng đã có vi khuẩn phát triển, nếu người ta cho vào đấy thực khuẩn thể tương ứng, thì môi trường trước kia đục ngầu vì có vi khuẩn sẽ trở thành trong suốt sau vài giờ. Trên bề mặt môi trường thạch đặc vừa mới cấy vi khuẩn, người ta rỏ một giọt thực khuẩn thể tương ứng vào một điểm, thì sau một thời gian để ở tủ ấm 370C, chỗ đã rỏ giọt thực khuẩn thể sẽ trơ thạch ra, còn ở bề mặt còn lại vi khuẩn mọc kín hết. Nhà văn Sinclair Lewis là người đầu tiên đã nói về liệu pháp thực khuẩn thể chữa bệnh nhiễm trùng, trong cuốn tiểu thuyết mang tên Arrowsmith xuất bản vào năm 1925 của ông. Các nước Đông Âu và Liên Xô cũ, trong nhiều thập kỷ đã ứng dụng liệu pháp thực khuẩn thể vào điều trị có hiệu quả cao, nhưng chỉ được ít người biết đến. Đặc biệt là sự xuất hiện của nhiều loại thuốc kháng sinh với những thắng lợi rực rỡ của nó, được coi là sử dụng đơn giản và hiệu quả, thực khuẩn thể hầu như đã bị mọi người lãng quên. HÌNH THÁI- CẤU TRÚC Cấu trúc đối xứng phức hợp Thể thực khuẩn T4 cấu tạo bởi 3 bộ phận: đầu , cổ, và đuôi. Đầu có cấu trúc đối xứng 20 mặt còn đuôi lại có đối xứng xoắn. Chính vì vậy mà người ta gọi là đối xứng phức hợp. Đầu dài 95nm, rộng 65nm, dưới kính hiển vi điện tử có thể thấy rõ 20 mặt. Capsid cấu tạo bởi 8 loại protein, lựơng chứa protein chiếm 76-81% trong thể thực khuẩn. Mỗi capsome có đường kính là 8nm. Có cả thẩy 212 capsome. Bên trong đầu có sợi ds DNA. Đầu nối với đuôi qua cổ. Đó là một đĩa hình lục giác , đường kính 37.5nm, có 6 tua cổ (cảnh tu) mọc ra từ cổ. Đuôi gồm bao đuôi, ống đuôi, đĩa gốc. 6 mấu ghim và 6 sợi đuôi. Bao đuôi dài 95nm, có 24 vòng xoắn cấu tạo bởi 144 capsome (mỗi capsome có khối lượng phân tử là 55000) cấu tạo nên.Ống đuôi dài 95nm, đường kính 8nm, ở giữa có lỗ thủng đường kính 2.5-3.5nm. Đây là con đường để dẫn DNA trong đầu của thể thực khuẩn xâm nhiễm vào tế bào vật chủ. Ống đuôi cũng cấu tạo bởi 24 vòng xoắn, tương ứng 24 vòng xoắn trên bao đuôi. Đĩa gốc cũng tương tự như đĩa cổ, đó là một đĩa hình lục giác, rỗng ở giữa. đường kính đĩa gốc là 30.5nm, trên đó mọc ra 6 sợi đuôi và 6 mấu ghim. Mấu ghim dài 20nm có chức năng hấp phụ. Sợi đuôi dài 140nm có thể gấp lại ở chính giữa, đường kính 2nm. Sợi đuôi cấu tạo bởi 2 laoị phân tử protein khá lớn và 4 loại phân tử protein khá nhỏ. Nó có tác dụng hấp phụ chuyên hoá và vùng mẫn cảm của bê mặt tế bào vật chủ. Sau khi sợi đuôi hấp phụ đĩa gốc sẽ bị kích thích, dẫn đến việc co rút bao đuôi và làm cho ống đuôi đâm vào tế bào vật chủ. Khi đó 144 capsome của bao đuôi sẽ phát sinh những phản ứng thay đổi vị trí khá phức tạp làm cho chiều dài đuôi co lại chỉ còn 50%, rất giống với sự co của các protein sợi cơ *Vỏ capsid: Capsid là vỏ protein bao bọc phần đầu chưua DNA của virus,được cấu tạo bởi các đơn vị hình thái gọi là capsome. Capsome lại được cấu tạo từ 5 hoặc 6 đơn vị cấu trúc gọi là protome. Protome có thể là monome (chỉ có một phân tử protein) hoặc polyme (có nhiều phân tử protein) - Pentame (penton) có 5 protome nằm trên các đỉnh của khối đa diện, còn hexame (hexon) tạo thành các cạnh và bề mặt hình tam giác.  - Capsid có khả năng chịu nhiệt, pH và các yếu tố ngoại cảnh nên có chức năng bảo vệ lõi acid nucleic  - Trên mặt capsid chứa các thụ thể đặc hiệu, hay là các gai glicoprotein, giúp cho virus bám vào các thụ thể trên bề mặt tế bào. Đây cũng chính là các kháng nguyên (KN) kích thích cơ thể tạo đáp ứng miễn dịch (ĐƯMD).  - Vỏ capsid có kích thước và cách sắp xếp khác nhau khiến cho virus có hình dạng khác nhau. Có thể chia ra ba loại cấu trúc: đối xứng xoắn, đối xứng hình khối và cấu trúc phức tạp (Hình 1). Hình 1. Kích thước và hình thái của một số virus điển hình .Theo Presscott L. M. et al. , Microbiology. 6th ed. Intern. Ed. 2005. 2.2.1 Cấu trúc đối xứng xoắn: Sở dĩ các virus có cấu trúc này là do capsome sắp xếp theo chiều xoắn của acid nucleic. Tuỳ loại mà có chiều dài, đường kính và chu kỳ lặp lại của các nucleocapsid khác nhau. Cấu trúc xoắn thường làm cho virus có dạng hình que hay hình sợi ví dụ virus đốm thuốc lá (MTV), dại (rhabdo), quai bị, sởi (paramyxo), cúm (orthomyxo). ở virus cúm các nucleocapsid được bao bởi vỏ ngoài nên khi quan sát dưới kính hiển virus điện tử thấy chúng có dạng cầu. 2.2.2 Cấu trúc đối xứng dạng khối đa diện 20 mặt Hình của phòng thí nghiệm  Robert M Bock Đại học University of Wisconsin-Madison. Ở các virus loại này, capsome sắp xếp tạo vỏ capsid hình khối đa diện với 20 mặt tam giác đều, có 30 cạnh và 12 đỉnh. Đỉnh là nơi gặp nhau của 5 cạnh thuộc loại này gồm các virus adeno, reo, herpes và picorna. Gọi là đối xứng vì khi so sánh sự sắp xếp của capsome theo trục. Ví dụ đối xứng bậc 2, bậc 3, bậc 5, vì khi ta xoay với 1 góc 1800 (bậc 2), 1200 (bậc 3) và 720 (bậc 5) thì thấy vẫn như cũ. Các virus khác nhau có số lượng capsome khác nhau. Virus càng lớn, số lượng capsome càng nhiều. Dựa vào số lượng capsome trên mỗi cạnh có thể tính được tổng số capsome của vỏ capsid theo công thức sau: N= 10(n-1)2+2 Trong đó N- tổng số capsome của vỏ capsid, n-số capsome trên mỗi cạnh. Hình 2. A Sơ đồ virus hình que với cấu trúc đối xứng xoắn (virus khảm thuốc lá). Capsome sắp xếp theo chiều xoắn của acid nucleic. B- Sơ đồ virus đa diện đơn giản nhất. Mỗi mặt là một tam giác đều. Đỉnh do 5 cạnh hợp lại. Mỗi cạnh chứa 3 capsome. C- Sự đối xứng của hình đa diện thể hiện khi quay theo trục bậc 2 (1800), bậc 3 (1200) và bậc 5 (720). Theo J. Nicklin et al., Instant Notes in Microbiology, Bios Scientific Publisher, 1999.   Trong một nguồn tài liệu khác chi tiết hơn thì: Có 2 phần chính cấu trúc nên Phage T4: phần đầu , phần thân cùng với các sợi đuôi Phần đầu: Phần đầu của bacteriophage T4 có trọng lượng khoảng 194 Mda, chiều dài khoảng 1150 Ǻ  và chiều rộng khoảng 850 Ǻ . Phần đầu là một khối đa diện 20 mặt bao gồm 160 phân tử có chứa 6 tiểu đơn vị của Gp23( protein capsid chính), 11 phân tử có chứa 5 tiểu đơn vị trong Gp24 (các protein ở góc) và 1 phân tử có 20 tiểu đơn vị trong Gp20 Trong suốt quá trình định hình phần đầu , các protein nâng đỡ trải qua sự phân giải của Gp21 amin của protein gp23 , gp24, IPI, IPII, IPIII, và gpalt được phân cắt, trong khi protein gp22, gp21, gp67, và gp68 được tiêu hóa. Khoảng cách giữa các trung tâm gp23 là ~ 140Ǻ . protein tạo thành một vỏ khoảng 30-Ǻ bảo vệ acid nucleic. Góc được chiếm bởi Gp24 và chúng tương tác với phần viền ngoài của Gp23 Một yếu tố cấu trúc của các capsid của T4 là một loại protein nhỏ tên Soc. Nó tạo một lưới gần như liên tục trên bề mặt của gp23. Nó liên kết 2 tiểu đơn vị Gp23, nhưng nó không thể liên kết quanh Gp24 hoặc khoảng giữa Gp23 và Gp24. Kết quả là mạng lưới tạo bởi Gp Soc chỉ bao quanh gp23, bỏ qua Gp24. Hầu như các phân tử Gp23 kết nối với 2 protein Soc, ngoại trừ những phân tử nằm gần nhất với Gp24. Mặc dù chức năng của Soc chưa được xác định đầy đủ, nó được coi là ổn định các thể thực khuẩn của capsid chống lại biến tính nhiệt và tiếp xúc với kiềm ,chất tẩy rửa, do đó, nó có trách nhiệm bảo toàn sự sinh tồn của thể thực khuẩn trong điều kiện không thuận lợi. Gene (kDa) Kích thước (số lượng amino-acid) Số lượng trong đầu trưởng thành Địa điểm 21 18.5 ♦ ♦ Lõi 22 2.5 ♦ ♦ Lõi, protein chính 23 48.7 422 930 vỏ,capsid 24 46.0 407 55 vỏ, đỉnh 67 3.9 ♦ ♦ lõi 68 15,7 ♦ ♦ lõi Alt 75.9 682 40 lõi Học 39.1 376 155 vỏ, bên ngoài bề mặt IPI 8.5 ♦ ♦ lõi IPII 9.9 ♦ ♦ lõi IPIII 20.4 ♦ ♦ lõi Soc 9.7 80 810 vỏ, ngoài Phần Thân VÀ Các Sợi của PHAGE T4 Thân và các sợi: Phần này rất quan trọng với Phage T4 vì nó là công cụ đắc lực để giúp Phage bám vào vật chủ. Phần này của lớp vỏ xác định đặc tính cũng như khả năng lây nhiễm vào vi khuẩn của Phage. Phần thân bao gồm 2 protein hình trụ đồng tâm nhau. Ống ở ngoài sẽ co lại và ống ở trong sẽ tạo thành 1 đường rãnh nhỏ dành riêng cho acid nucleic đang được lưu giữ trong phần đầu của Phage. Giống như 1 ống tiêm, cấu trúc của phần thân có khả năng đẩy DNA của Phage vào trong tế bào của vi khuẩn. Phần ống bên trong được cấu tạo bởi 144 mẫu Gp19, phần ống bên ngoài được gọi là lớp vỏ của thân, nó được cấu tạo bởi 144 mẫu Gp18 ( tương ứng số lượng của Gp19).Chiều dài của phần thân được xác định bởi “thước đo protein” : Gp29 (Leiman và cộng sự năm 2003), khi đó chiều dài nếu không co lại của phần thân là 1000 Ǻ và 210 Ǻ đường kính (Mesyanshinov và cộng sự năm 2004). Khi co lại, lớp vỏ của thân chỉ khoảng 360 Ǻ chiều dài và 270 Ǻ đường kính. Chiều dài của ống trong không thay đổi trong suốt quá trình co lại của của bao đuôi (Leiman và cộng sự năm 2003). Ở hai đầu của ống là một tấm nền (vòng cổ) và các sợi đuôi. Vòng cổ là một cấu trúc đa protein,những protein cấu tạo thành 6 tấm nêm( WHISKER) bao quanh trục trung tâm nhờ sự giúp đỡ của protein (gp9)3 và (gp12)3. Gp11, gp10, gp7, gp8, gp6, gp53, và gp25 kết hợp liên tiếp nhau để tao nên các vòng nêm. Gp5, gp27, gp29, gp26 ,gp28 tạo nên trục của nêm. Gp5 có 1 lysozyme  cần cho sự tiêu hoá lớp peptidoglycan của vi khuẩn trong suốt quá trình xâm nhập. Một trong những bộ phận hữu dụng nhất của bacteriophage T4 là những sợi đuôi. Sợi đuôi dài và những râu ngắn hơn (mọc ra từ vùng cổ áo-còn gọi là các tua cổ) được gắn vào 2 đầu ống thân (Coley và Wood năm 1975). Những sợi đuôi dài sẽ đảm nhận trách nhiệm của việc liên kết với các thụ thể đặc biệt trên bề mặt vi khuẩn. Mỗi sợi đuôi bao gồm 2 phần: 1 nửa ở gần được mã hoá bởi gen 34 và phần ở xa được mã hoá bởi gen 36 và 37. Cả hai phần này sẽ được kết nối bởi Gp35, đồng thời tương tác với Gp34 và Gp36. Protein sẽ liên kết sợi đuôi với mặt tiếp xúc của Gp9. Sự kết hợp của phần đuôi ở gần với Gp9 được giúp đỡ bởi Gp63. Gp9 có vai trò cực kì quan trọng trong quá trình lây nhiễm. Sau khi liên kết 1 sợi đuôi tới 1 LPS (lipopolysaccharide) ở thành tế bào vi khuẩn, nó sẽ khởi động quá trình biến đổi cấu trúc ở nơi tiếp xúc , sau đó bao đuôi sẽ co lại cho phép thể thực khuẩn tiêm DNA của nó vào tế bào. Bên cạnh đó , Gp9 còn đảm bảo chức năng chuyển động tổng hợp của tất cả sợi đuôi và ngăn cản sự chống đỡ của thành tế bào. Các đuôi ngắn (tua cổ) là Gp12 được gắn vào mặt tiếp xúc bằng Gp11,chúng có cấu trúc thu hẹp ở giữa-nơi cho phép các sợi uốn cong lên. Các tua cổ đảm nhiệm chức năng liên kết phần đầu của Phage với bề mặt vi khuẩn. Trong suốt quá trình xâm nhập phân tử gp12 liên kết với các khu vực cốt lõi của các receptor trên bề mặt tế bào LPS (Mesyanzhinov và cộng sự 2004). Cấu trúc PRPTEIN của phần thân và sợi đuôi của phage t4 (xác định bởi Mesyanzhinov và cộng sự 2004 , Leimann và cộng sự 2003). Gene (kDa) Kích thước (số lượng amino-acid ) Số mẫu tồn tại Vị trí 3 19.7 176 6 ống thân 5 63.7 575 3 Trục trung tâm 6 74.4 660 12 Phần nêm bao ống thân 7 119.2 1032 6 Phần nêm bao ống thân 8 38.0 334 12 Phần nêm bao ống thân 9 31.0 288 18 phần đầu 10 66.2 602 18 Mấu ghim 11 23.7 219 18 Mấu ghim 12 55.3 527 3* Mặt tiếp xúc (Tấm nền) 15 31.4 272 6 Thân 18 71.2 659 144 Bao đuôi(thân) 19 18.5 163 144 Ống trong (thân) 25 15.1 132 6 Lớp nêm mặt tiếp xúc 26 23.4 208 n.d. Chaperone 27 44.4 208 3 Trục trung tâm 28 24.0 177 n.d. Trục trung tâm 29 64.4 391 6 Ống trong 34 140.0 1289 3* Phần đuôi gần 35 30.0 372 1* Phần cổ 36 23.0 221 3* Phần đuôi xa 37 109.0 1026 3* Phần đuôi xa 48 39.7 177 6 Lớp nêm mặt tiếp xúc 53 23.0 196 6 Lớp nêm mặt tiếp xúc 54 35.0 590 6 Lớp nêm mặt tiếp xúc Frd 21.7 320 6 Lớp nêm mặt tiếp xúc Td 33.1 364 3 Trục trung tâm wac 51.9 89 3* Phần liên kết giữa đầu và thân n.d : Không xác định *: số mẫu của các protein cho mỗi sợi đuôi. Có sáu sợi ở mỗi virion T4 bám vào ,bao đuôi xoắn lại 2. Sự sắp xếp của các gene trong nhiễm sắc thể phage Tần số tái tổ hợp có thể được sử dụng để xác định khoảng cách của bản đồ ở Eukaryote. Các thí nghiệm lập bản đồ cho thấy đột biến ở T4 được lập bản đồ thành 3 cụm riêng biệt. Cả ba cụm này có liên kết với một cụm khác. George Streisinger và cộng sự (1964) đã chứng minh bản đồ di truyền của phage T4 có dạng vòng tròn. Trong mỗi phép lai, lập ba đến bốn điểm đánh dấu ( MARKER) di truyền lần lượt với mỗi nhóm và tiến hành qua toàn bộ genome của T4. Nhiều gene khác đã được xác định và lập bản  đồ  đầy đủ  trên  phân tử vòng  tròn .  Những vùng ở vòng tròn bên trong là 3 cụm của điểm đánh dấu T4 đã được xác định và lập bản đồ di truyền. Vòng ngoài có mặt của nhiều bộ đánh dấu lớn tạo thành toàn bộ vòng tròn của bản đồ di truyền. Bản đồ di truyền phage T4 cho thấy gene của phage T4 tạo cụm mở rộng theo chức năng của chúng. Chẳng hạn có cụm lớn các gene dùng  cho sao chép DNA  ở vị trí phần tư bên trên phía phải và có cụm gene tổng hợp các cấu phần tạo nên đầu của phage ở phía dưới của vòng tròn. Phân tử DNA của phage T4 là phân tử sợi đơn dạng thẳng, mỗi đầu tận  cùng  của  DNA  phage  T4  được  nhân  lên  hoặc  lặp  đoạn  ở  đầu  cuối (terminal redundant). Do vậy,  mỗi phân tử DNA có kích thước tăng thêm 2%. Khi DNA được sao chép trong tế bào, sự tái tổ hợp giữa các phần ở đầu tận cùng của bộ gen T4 với những trình tự tương đồng của bộ gen T4 khác, kết  quả  tạo  ra  sản  phẩm  DNA  có  kích  thước  lớn  hơn  khả  năng  chứa  của phần  đầu.  Những  phân  tử  chứa  lặp  đoạn  được  tạo  thành  vì  sự  tái  tổ  hợp trong bộ gen của phage T4 xảy ra thường xuyên, trung bình có khoảng 20%sự kiện tái tổ hợp xảy ra trên một nhiễm sắc thể. Khi phân tử DNA được gói vào  phần  đầu,  nó  được  cắt  bằng  enzyme  chỉ  còn  chứa  khoảng  102%  của  chiều dài bộ gen phage T4, vì có chứa đoạn lặp lại của phần đầu. Bản đồ di truyền của T4 với các marker 3. Lập bản đồ cấu trúc tinh vi vùng rII của phage T4 Các nghiên cứu chi tiết về các đột biến rII của phage T4 làm sáng tỏ hơn về cấu trúc gene. Phage T4 ở dạng hoang dại r+ có khả năng nhiễm đồng thời hai nòi   E.coliB và K. Các đột biến rII chỉ nhiễm nòi B nhưng không nhiễm  nòi  K.  Seymour  Benzer  (1955)  đã  nhận  được  2400  đột  biến  rII  có nguồn gốc độc lập với nhau. Ông đã cho lai các đột biến với nhau và căn cứ vào sự xuất hiện các dạng tái tổ hợp hoang dại r+ mà lập bản đồ các điểm đột biến. Mỗi  đột  biến  có  thể  tái  tổ  hợp  với  các  đột  biến  khác.  Đột  biến  mất đoạn ngăn cản sự tái tổ hợp với hai hoặc nhiều đột biến điểm ở các vị trí khác nhau của gene. Mỗi mất đoạn làm mất một phần bộ gene của phage bao gồm cả vùng rII. Sử dụng đột biến mất đoạn là phương pháp đơn giản để lập bản đồ của hàng ngàn đột biến. Bản đồ mất đoạn (Deletion mapping) dựa trên sự có hoặc không có dạng tái tổ hợp. Trong bất kỳ phép lai nào giữa một đột biến điểm chưa biết và một đột biến mất đoạn, sự xuất hiện của dạng hoang dại cho thấy đột biến điểm nằm ngoài vùng mất đoạn. Ngược lại, nếu đột biến điểm xuất hiện trong vùng mất đoạn, không xuất hiện dạng tái tổ hợp kiểu hoang dại ở thế hệ sau. Đột biến mất đoạn được sử dụng để chia locus rII của bacteriophage T4 thành 7 vùng và 47 tiểu vùng nhỏ Nhiều phép lai đã được thực hiện để lập bản đồ đột biến chi tiết gene rII. Khoảng cách từ A1 đến A6 và B được trình bày ở hình 8.4. Một đột biến đặc biệt đã được kiểm tra định vị ở vùng A4. Đột biến này không tái tổ hợp tạo dạng kiểu dại trong phép lai với các đột biến mất đoạn lớn như r1272, r1241, rJ3 và rPT1 nhưng nó có thể tái tổ hợp tạo dạng kiểu dại trong phép lai  với  rPB242,  rA105  và  r638.  Các  đột  biến  được  tạo  ra  bởi  cùng  một khuôn, kết quả lai với các đột biến mất đoạn lớn sẽ được xếp vào vùng A4. Bản đồ di truyền trong vùng A4 có thể được tạo ra bởi một bộ các đột biến mất đoạn được trình bày ở phần dưới của hình. Xác định 7 tiểu vùng ở trong A4 (từ a qua g). Xác định vùng rII liên quan với các marker di truyền dạng thẳng của bản đồ di truyền phage T4 Ví dụ, một đột biến trong vùng A4 kết quả tái tổ hợp tạo dạng kiểu dại với đột biến mất đoạn r1368, nhưng lại không thể thực hiện được với đột biến r221 sẽ được sắp vào tiểu vùng c. Ở mức độ chi tiết hơn, các đột biến trong một tiểu vùng được sắp xếp nhờ lai giữa chúng với nhau. Ở phage T4, các điểm đột biến ở rất gần nhau, được tách nhau nhờ tái tổ hợp. 1% tái tổ hợp tương ứng với khoảng cách khoảng 100 bp. Vì vậy, bất kỳ hai đột biến không thể tái tổ hợp được với nhau có thể được xếp vào cùng vị trí trong gene.  Bản  đồ  di  truyền  cho  số  lớn  các  đột  biến  rII  có  nguồn  gốc  độc  lập được mô tả ở hình. Nghiên cứu đột biến ở vùng rII và lập bản đồ di truyền có vai trò quan trọng, qua đó có thể rút ra các kết luận sau: + Sự  trao  đổi di truyền  có thể  xảy ra trong  gene và có  thể giữa  các nucleotide ở gần nhau. + Các đột biến không được tạo ra ở cùng tần số với tất cả các điểm trong gene, chúng phân bố không đều nhau. Chẳng hạn, 2400 đột biến rII đã được xác định chỉ ở 304 điểm. Một trong những điểm này có thể có đến 474 đột biến . Nhũng điểm có tần số đột biến cao như thế được gọi là các điểm nóng (hotspot mutation). Ở những điểm khác, đột biến được phục hồi một lần hoặc vài lần. Bản đồ di truyền locus rII của phage T4 Kết quả phân tích vùng rII rất quan trọng, giúp cho chúng ta phân biết được 3  khái  niệm  về gene.  Phổ  biến  nhất,  gene liên  quan với  một  đơn vị chức năng. Điều này tương ứng với một đoạn DNA mã hóa cho một phân tử protein.  Benzer  đưa  ra  thuật  ngữ  cistron  để  chỉ  chức  năng  này,  thuật  ngữ cistron thỉnh thoảng vẫn được sử dụng. Đơn vị chức năng được xác định qua thử  nghiệm  bổ  sung  (complementation  test),  xác  định  được  2  đột  biến  có allele với nhau không. Trước thí nghiệm của ông rII được coi là một locus. Thí nghiệm cho thấy các đột biến xếp thành hai nhóm rIIA và rIIB. Lai các đột biến rIIA x rIIB sẽ có r+, nhưng lai rIIA ´ rIIA và rIIB ´ rIIB thì thu được kiểu hình đột biến r. Ngoài nghĩa là đơn vị chức năng, gene còn là đơn vị tái tổ hợp (recon) và đơn vị đột biến (muton). Cả hai đơn vị này,  đều tương ứng với những nucleotide riêng lẽ trong gene. 4. CHU TRÌNH TIỀM TAN Ở PHAGE T4 Chu  trình  tiềm  tan  bắt  đầu  khi  phân  tử  DNA  của  phage  gắn  vào nhiễm sắc thể của vi khuẩn  và tiến hành sao chép như một phần nhiễm sắc thể vi khuẩn. Các hạt phage không được tạo thành. Phân tử DNA của phage được gắn vào bộ gen của vi khuẩn được gọi là prophage, tế bào vi khuẩn sống  sót  được  gọi  là  tế  bào  tiềm  tan  (lysogen).  Phân  tử  DNA  của  phage   có  đầu  các  đầu  cuối  chứa  12  nucleotide không kết cặp, mà ở dạng sợi đơn tạo đầu dính  (cohesive end) bổ sung. Khi vào tế bào, đầu cuối bổ sung gắn lại tạo phân tử vòng tròn. Sự tạo vòng tròn xảy ra sớm ở cả chu trình tan và chu trình tiềm tan . Có khoảng 75% tế bào vi khuẩn bị nhiễm phage, phân tử DNA vòng tròn sao chép và chu trình tan xảy ra tiếp  theo. Còn khoảng 25%  tế bào bị nhiễm, phân t
Tài liệu liên quan