Bài giảng Kinh tế học quản lý - Chương 7 Lý thuyết trò chơi và tư duy chiến lược

 Lý thuyết trò chơi là một nhánh của toán học ứng dụng thường được sử dụng trong phân tích kinh tế.  Nó sử dụng các mô hình để nghiên cứu các tình huống chiến thuật, trong đó những người tham gia (người chơi) cố gắng để tối đa kết quả thu được của mình có tính đến hành động và phản ứng của các đối thủ khác

pdf26 trang | Chia sẻ: thanhlam12 | Lượt xem: 839 | Lượt tải: 0download
Bạn đang xem trước 20 trang tài liệu Bài giảng Kinh tế học quản lý - Chương 7 Lý thuyết trò chơi và tư duy chiến lược, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
12/13/2012 1 112/13/2012 GVC: PHAN THẾ CÔNG KINH TẾ HỌC QUẢN LÝ (Managerial Economics) Chương 7 LÝ THUYẾT TRÒ CHƠI VÀ TƯ DUY CHIẾN LƯỢC 212/13/2012 GVC: PHAN THẾ CÔNG 12/13/2012 2 John Nash (1928--)  Received his Ph.D. from Princeton University with a 28-page thesis on his 22-nd birthday.  Invented the notion of Nash equilibrium.  Wrote a seminal paper on bargain theory.  Xem phim “A beautiful Mind” nói về cuộc đời của John Nash. GVC: PHAN THẾ CÔNG 312/13/2012 12/13/2012 GVC: PHAN THẾ CÔNG 4 Applications of game theory  Economic theory  Political science  Psychological study  Evolutionary biology (1970..)  Computer science  Yao’s Lemma (1977) 12/13/2012 3 5 Nobel Prize in Economic Sciences 1994 John C. Harsanyi John F. Nash Jr. Reinhard Selten "for their pioneering analysis of equilibria in the theory of non-cooperative games" 12/13/2012 GVC: PHAN THẾ CÔNG 6 Nobel Prize in Economic Sciences 2005 Robert J. Aumann Thomas C. Schelling "for having enhanced our understanding of conflict and cooperation through game-theory analysis" 12/13/2012 GVC: PHAN THẾ CÔNG 12/13/2012 4 Lý thuyết trò chơi  Lý thuyết trò chơi là một nhánh của toán học ứng dụng thường được sử dụng trong phân tích kinh tế.  Nó sử dụng các mô hình để nghiên cứu các tình huống chiến thuật, trong đó những người tham gia (người chơi) cố gắng để tối đa kết quả thu được của mình có tính đến hành động và phản ứng của các đối thủ khác 712/13/2012 GVC: PHAN THẾ CÔNG Một số khái niệm cơ bản  Trò chơi: một tình huống mà trong đó người chơi (người tham gia) đưa ra quyết định chiến lược có tính đến hành động và phản ứng của các đối thủ  Nếu tôi tin rằng các đối thủ cạnh tranh của tôi là người có lý trí và hành động để tối đa hóa lợi nhuận của họ thì tôi phải tính đến hành vi của họ như thế nào khi ra quyết định tối đa hóa lợi nhuận của mình 812/13/2012 GVC: PHAN THẾ CÔNG 12/13/2012 5 Một số khái niệm cơ bản  Người chơi:  Những người tham gia và hành động của họ có tác động đến kết quả của của bạn.  Chiến lược:  Nguyên tắc hoặc kế hoạch hành động trong khi tiến hành trò chơi  Kết cục:  Giá trị tương ứng với một kết quả có thể xảy ra.  Phản ánh lợi ích thu được của mỗi người chơi 912/13/2012 GVC: PHAN THẾ CÔNG Một số khái niệm cơ bản  Trò chơi đồng thời:  Các đối thủ ra quyết định khi không biết đến quyết định của đối phương  Trò chơi tuần tự:  Một người chơi ra quyết định trước, người chơi tiếp theo ra quyết định căn cứ vào quyết định của người đi trước. 1012/13/2012 GVC: PHAN THẾ CÔNG 12/13/2012 6 Một số khái niệm cơ bản  Trò chơi hợp tác:  là trò chơi mà trong đó những người chơi có thể đàm phán những cam kết ràng buộc lẫn nhau cho phép họ cùng lập các kế hoạch chiến lược chung  Trò chơi bất hợp tác:  Các bên tham gia không thể đàm phán và thực thi có hiệu lực các cam kết ràng buộc 1112/13/2012 GVC: PHAN THẾ CÔNG Các giả định để nghiên cứu  Những người chơi là những người có lý trí  Mục đích của những người chơi đều là tối đa hóa kết cục của bản thân họ  Những người chơi đều là những người biết tính toán hoàn hảo  Hiểu biết chung:  Mỗi người chơi đều biết nguyên tắc của trò chơi  Mỗi người chơi đều biết rằng người khác cũng biết nguyên tắc của trò chơi  Mỗi người chơi đều biết người chơi khác cũng là người có lý trí 1212/13/2012 GVC: PHAN THẾ CÔNG 12/13/2012 7 Trò chơi đồng thời  Trong khi tôi đưa ra quyết định của mình thì bạn cũng vậy  Tôi và bạn đều đưa ra quyết định mà không biết đến quyết định của người khác  Cái mà tôi quyết định có ảnh hưởng đến kết cục của bạn và cái mà bạn quyết định cũng ảnh hưởng đến kết cục của tôi.  Cần phải đưa ra quyết định như thế nào? 1312/13/2012 GVC: PHAN THẾ CÔNG Trò chơi đồng thời  Xác định ma trận lợi ích (ma trận kết cục): chỉ ra tất cả các kết cục của mỗi người chơi tương ứng với tất cả các hành động của mỗi người.  Xác định hành động có kết quả tốt nhất cho cả mình và đối thủ  Tìm ra cân bằng Nash 1412/13/2012 GVC: PHAN THẾ CÔNG 12/13/2012 8 Cân bằng Nash  Cân bằng Nash là một tập hợp các chiến lược (hoặc hành động) mà mỗi người chơi có thể làm điều tốt nhất cho mình, khi cho trước hành động của các đối thủ.  Mỗi người chơi không có động cơ xa rời chiến lược Nash của mình nên đây là các chiến lược ổn định 1512/13/2012 GVC: PHAN THẾ CÔNG Cân bằng Nash  Nhắc lại:  Cân bằng Cournot chính là cân bằng Nash:  Hai hãng ra quyết định sản lượng đồng thời.  Mỗi hãng sản xuất ở mức sản lượng làm hãng tối đa hóa lợi nhuận khi biết các hãng đối thủ sản xuất bao nhiêu.  Cân bằng Stackelberg cũng là cân bằng Nash:  Một hãng ra quyết định sản lượng trước, một hãng hành động theo sau  Mỗi hãng làm điều tốt nhất cho mình khi cho trước quyết định của đối thủ 1612/13/2012 GVC: PHAN THẾ CÔNG 12/13/2012 9 Thể hiện một trò chơi 17 Người chơi Chiến lược Kết cục Hãng B Không Q/cáo Q/cáo Hãng A Ko Q/cáo 50 , 50 20 , 60 Q/cáo 60 , 20 30 , 30 12/13/2012 GVC: PHAN THẾ CÔNG Giải quyết trò chơi  Phản ứng tốt nhất của hãng A  Nếu Hãng B không quảng cáo: Quảng cáo  Nếu Hãng B quảng cáo: Quảng cáo  Hãng A sẽ quảng cáo bất kể hãng B có quảng cáo hay không 18 Hãng B Ko Q/cáo Q/cáo Hãng A Ko Q/cáo 50 , 50 20 , 60 Q/cáo 60 , 20 30 , 30 12/13/2012 GVC: PHAN THẾ CÔNG 12/13/2012 10 Chiến lược ưu thế  Chiến lược ưu thế là một chiến lược hoặc hành động mang lại kết cục tốt nhất dù cho các đối thủ có quyết định làm gì đi chăng nữa  Nếu một trò chơi có chiến lược ưu thế:  các đối thủ sẽ lựa chọn chiến lược ưu thế của mình 1912/13/2012 GVC: PHAN THẾ CÔNG Chiến lược ưu thế và cân bằng Nash  Chiến lược ưu thế: Tôi đang làm điều tốt nhất có thể được cho tôi, bất kể bạn có làm điều gì đi nữa. Bạn đang làm điều tốt nhất có thể cho bạn, bất kể tôi làm gì đi nữa.  Cân bằng Nash: Tôi đang làm điều tốt nhất có thể được, cho trước cái bạn đang làm. Bạn đang làm điều tốt nhất có thể được, cho trước cái tôi đang làm  Cân bằng chiến lược ưu thế là trường hợp đặc biệt của cân bằng Nash 2012/13/2012 GVC: PHAN THẾ CÔNG 12/13/2012 11 Chiến lược ưu thế  Nguyên tắc:  Nếu bạn có chiến lược ưu thế, hãy sử dụng nó  Dự đoán rằng đối thủ của bạn cũng sử dụng chiến lược ưu thế của họ nếu như họ cũng có chiến lược ưu thế 2112/13/2012 GVC: PHAN THẾ CÔNG Tình thế lưỡng nan của những người tù 22 Người B Thú tội Không thú tội Người A Thú tội 8 , 8 0 , 20 Không thú tội 20 , 0 1 , 1 - Chiến lược ưu thế của người A: Thú tội - Chiến lược ưu thế của người B: Thú tội - Cân bằng xảy ra khi cả hai người cùng thú tội 12/13/2012 GVC: PHAN THẾ CÔNG 12/13/2012 12 Trò chơi quảng cáo 23 Hãng B Lớn Trung bình Hãng A Lớn 70 , 50 140 , 25 Trung bình 25 , 140 120 , 90 - Cả hai hãng đều có chiến lược ưu thế - Ở trạng thái cân bằng, kết cục của hai hãng đều bị giảm đi so với trường hợp hai hãng hợp tác với nhau 12/13/2012 GVC: PHAN THẾ CÔNG 24 Ra quyết định như thế nàokhi chỉ có một người chơi có chiếnlược ưu thế? Giả định rằng người chơi kia sử dụng chiến lược ưu thế của họ, khi đó sẽ chọn chiến lược phù hợp nhất khi đã biết chiến lược họ sử dụng 12/13/2012 GVC: PHAN THẾ CÔNG 12/13/2012 13 Khi chỉ một người chơi có chiến lược ưu thế 25 Hãng B Q/cáo Ko Q/cáo Hãng A Q/cáo 10 , 5 15 , 0 Ko Q/cáo 6 , 8 20 , 2 - Hãng A không có chiến lược ưu thế - Hãng B có chiến lược ưu thế: Quảng cáo - Hãng A cho rằng B sẽ quảng cáo  khi đó lựa chọn tốt nhất của hãng A là Quảng cáo 12/13/2012 GVC: PHAN THẾ CÔNG 26 Nếu không người chơi nào có chiến lược ưu thế? 12/13/2012 GVC: PHAN THẾ CÔNG 12/13/2012 14 Quyết định giá khi không có chiến lược ưu thế 27 $2 $4 $5 Bar 1 $2 10 , 10 14 , 12 14 , 15 $4 12 , 14 20 , 20 28 , 15 $5 15 , 14 15 , 28 25 , 25 Bar 2 12/13/2012 GVC: PHAN THẾ CÔNG Loại trừ liên tiếp những chiến lược bị lấn át  Xác định xem có người chơi nào có chiến lược bị lấn át không?  Chiến lược bị lấn át là một chiến lược luôn có chiến lược khác tốt hơn nó  Nếu có chiến lược bị lấn át:  Loại bỏ chiến lược bị lấn át  Làm giảm kích thước của ma trận lợi ích  Lặp lại bước trên cho đến khi không còn chiến lược bị lấn át  Xác định điểm cân bằng 2812/13/2012 GVC: PHAN THẾ CÔNG 12/13/2012 15 29 $2 $4 $5 Bar 1 $2 10 , 10 14 , 12 14 , 15 $4 12 , 14 20 , 20 28 , 15 $5 15 , 14 15 , 28 25 , 25 Bar 2 Cân bằng Nash ($4,$4) Loại trừ liên tiếp những chiến lược bị lấn át 12/13/2012 GVC: PHAN THẾ CÔNG  Giả sử có hai hãng Alpha và Beta  Hai hãng có 3 sự lựa chọn:  Không mở rộng khả năng sản xuất: giữ nguyên quy mô  Mở rộng khả năng sản xuất với quy mô nhỏ  Mở rộng khả năng sản xuất với quy mô lớn 30 Loại trừ liên tiếp những chiến lược bị lấn át 12/13/2012 GVC: PHAN THẾ CÔNG 12/13/2012 16 31 Loại trừ liên tiếp những chiến lược bị lấn át Hãng Beta Giữ nguyên Nhỏ Lớn Hãng Alpha Giữ nguyên $18, $18 $15, $20 $9, $18 Nhỏ $20, $15 $16, $16 $8, $12 Lớn $18, $9 $12, $8 $0, $0 12/13/2012 GVC: PHAN THẾ CÔNG 32 Loại trừ liên tiếp những chiến lược bị lấn át Thứ tự loại trừ chiến lược bị lấn át không tác động đến kết quả Hãng Beta Giữ nguyên Nhỏ Lớn Hãng Alpha Giữ nguyên $18, $18 $15, $20 $9, $18 Nhỏ $20, $15 $16, $16 $8, $12 Lớn $18, $9 $12, $8 $0, $0 12/13/2012 GVC: PHAN THẾ CÔNG 12/13/2012 17 Phân tích phản ứng tốt nhất  Không phải mọi trò chơi đều có chiến lược ưu thế và chiến lược bị lấn át  Cần phân tích phản ứng tốt nhất để tìm ra cân bằng Nash 3312/13/2012 GVC: PHAN THẾ CÔNG Phân tích phản ứng tốt nhất  Ứng với mỗi chiến lược của đối thủ, tìm phản ứng tốt nhất của người chơi  Ứng với mỗi chiến lược của người chơi 2, tìm phản ứng tốt nhất của người chơi 1: Trong mỗi cột, tìm kết cục cao nhất của người chơi 1  Ứng với mỗi chiến lược của người chơi 1, tìm phản ứng tốt nhất của người chơi 2: Trong mỗi dòng, tìm kết cục cao nhất của người chơi 2  Cân bằng Nash xảy ra tại ô xảy ra kết cục cao nhất của cả hai người chơi  Khi phân tích phản ứng tốt nhất không tìm ra cân bằng Nash không có cân bằng Nash đối với các chiến lược thuần túy 3412/13/2012 GVC: PHAN THẾ CÔNG 12/13/2012 18 Phân tích phản ứng tốt nhất  Ví dụ  Có hai hãng cạnh tranh nhau, mỗi hãng kiếm được $45.000  Cả hai hãng có thể đầu tư vào nghiên cứu triển khai với chi phí là $45.000  Nghiên cứu triển khai chỉ thành công khi cả hai hãng đều tham gia  Nếu nghiên cứu triển khai thành công, mỗi hãng sẽ kiếm được $95.000 3512/13/2012 GVC: PHAN THẾ CÔNG Phân tích phản ứng tốt nhất  Có hai cân bằng Nash: cả hai cùng đầu tư, hoặc cả hai cùng không đầu tư  Các ô khác không phải là cân bằng Nash:  Nếu hãng 1 đầu tư và hãng 2 không đầu tư: cả hai hãng đều có động cơ thay đổi chiến lược của mình 36 Đầu tư Không Hãng 1 Đầu tư 50 , 50 0 , 45Không 45 , 0 45 , 45 Hãng 2 12/13/2012 GVC: PHAN THẾ CÔNG 12/13/2012 19 Chiến lược maximin Người chơi 2 Trái Phải Người chơi 1 Trên 1, 0 1, 1 Dưới -1000, 0 2, 1 12/13/2012 GVC: PHAN THẾ CÔNG 37 Chiến lược maximin  Trong trò chơi này, chơi “bên phải” là một chiến lược ưu thế đối với người chơi 2 vì bằng việc sử dụng chiến lược này, người chơi 2 sẽ được lợi hơn (thu được 1 chứ không phải là 0), bất kể người chơi 1 có làm gì đi nữa. Như vậy, người chơi 1 sẽ dự kiến rằng người chơi 2 sẽ chơi chiến lược “bên phải”. Trong trường hợp này, người chơi 1 sẽ được lợi hơn bằng việc chơi “bên dưới” (và thu được 2) chứ không phải là chơi “bên trên” (và thu được 1). Rõ ràng, kết cục (dưới, phải) là cân bằng Nash của trò chơi này. Nhưng lưu ý rằng, người chơi 1 phải biết rằng người chơi 2 hiểu trò chơi này và là người có lí trí. Nếu người chơi 2 tình cờ bị lỗi và chơi “bên trái” thì sẽ cực kỳ thiệt hại cho người chơi 1. 12/13/2012 GVC: PHAN THẾ CÔNG 38 12/13/2012 20 Chiến lược maximin  Nếu là người chơi 1, bạn sẽ làm gì? Nếu bạn là người thận trọng, và lo ngai rằng việc người chơi 2 có thể không được thông tin đầy đủ hoặc không có lí trí, bạn có thể chọn chơi “bên trên”. Trong trường hợp đó, bạn chắc chắn sẽ được 1, và bạn không có cơ hội mất 1000. Chiến lược như thế được gọi là chiến lược cực đại tối thiểu (maximin) vì nó cực đại hoá cái lợi tổi thiểu có thể thu được. Nếu cả hai người chơi cùng sử dụng chiến lược cực đại tối thiểu thì kết cục sẽ là (trên, phải). Chiến lược cực đại tối thiểu là chiến lược thận trọng, nhưng không phải là chiến lược tối đa hoá lợi nhuận (vì người chơi 1 thu được lợi nhuận bằng 1 chứ không phải bằng 2).  Lưu ý rằng, nếu người chơi 1 biết chắc rằng người chơi 2 sử dụng chiến lược cực đại tối thiểu thì người này sẽ thích chơi “bên dưới” (và thu được 2), thay vì theo chiến lược cực đại tối thiểu là chơi “bên trên”. 12/13/2012 GVC: PHAN THẾ CÔNG 39 Chiến lược maximin  Nhưng thú tội là một chiến lược ưu thế đối với mỗi người tù – nó đem lại kết cục tốt hơn cho họ, không cần biết đến chiên lược của người tù kia.  Các chiến lược ưu thế cũng là các chiến lược cực đại tối thiểu.  Kết cục trong đó cả hai người tù cùng thú tội vừa là cân bằng Nash vừa là giải pháp cực đại tối thiểu. Như vậy, theo cách suy luật logic nhất thì thú tội là hợp lý nhất đối với mỗi người tù. 12/13/2012 GVC: PHAN THẾ CÔNG 40 12/13/2012 21 Chiến lược maximin  Chiến lược maximin (cực đại hóa tối thiểu)  Đối với mỗi chiến lược, xác định kết cục thấp nhất  Trong các kết cục thấp nhất này, lựa chọn kết cục có giá trị cao nhất  Chiến lược maximin là chiến lược thận trọng, nhưng không tối đa hóa lợi nhuận  Nó có thể là cân bằng Nash, có thể không. 4112/13/2012 GVC: PHAN THẾ CÔNG Chiến lược maximin  Nếu hãng 1 không đầu tư mất lớn nhất là -10  Nếu hãng 1 đầu tư mất lớn nhất là -100  Nếu hãng 1 lựa chọn theo nguyên tắc maximin  chọn không đầu tư 42 Không Đầu tư Hãng 1 Không 0 , 0 -10, 10Đầu tư -100,0 20, 10 Hãng 2 12/13/2012 GVC: PHAN THẾ CÔNG 12/13/2012 22 Trò chơi tuần tự  Nếu hai hãng quyết định đồng thời có 2 cân bằng Nash không biết chắc các hãng sẽ lựa chọn như thế nào  Nếu hãng 1 là hãng quyết định trước:  Hãng 1 sẽ quyết định đầu tư và hãng 2 cũng quyết định đầu tư 43 Đầu tư Không Hãng 1 Đầu tư 50 , 50 0 , 45Không 45 , 0 45 , 45 Hãng 2 12/13/2012 GVC: PHAN THẾ CÔNG Trò chơi tuần tự  Hãng A là hãng độc quyền, hãng B muốn xâm nhập vào thị trường  Hãng A có hai sự lựa chọn là: không phản ứng gì hoặc đe dọa bằng cách giảm giá  Hãng B có hai sự lựa chọn là gia nhập thị trường hoặc không 4412/13/2012 GVC: PHAN THẾ CÔNG 12/13/2012 23 Trò chơi tuần tự 45 Hãng A Không p/ứng Đe dọa Gia nhập 50 , 50 -50 , -50 Không 0 , 100 0 , 100H ãn g B Sử dụng phương pháp phản ứng tốt nhất, tìm được hai cân bằng Nash 12/13/2012 GVC: PHAN THẾ CÔNG Trò chơi dạng mở rộng 46 B A 0 , 100 -50 , -50 50 , 50 12/13/2012 GVC: PHAN THẾ CÔNG 12/13/2012 24 Nhìn xa hơn  Hãng B quyết định trước: có gia nhập thị trường hay không  Để quyết định hãng B cần phải xem phản ứng của hãng A như thế nào  Nếu hãng B gia nhập:  Hành động tốt nhất của hãng A là không phản ứng 4712/13/2012 GVC: PHAN THẾ CÔNG và suy luận ngược  Xem xét quyết định của hãng B  Quyết định tốt nhất là hãng B gia nhập và hãng A không phản ứng 48 B A 0 , 100 50 , 50 Không phản ứng 12/13/2012 GVC: PHAN THẾ CÔNG 12/13/2012 25 Nguyên tắc  Nhìn xa hơn và suy luận ngược  Dự đoán rằng đối thủ của bạn có hành động gì vào ngày mai, để bạn đưa ra được phản ứng tốt nhất ngày hôm nay 4912/13/2012 GVC: PHAN THẾ CÔNG Giải quyết trò chơi tuần tự  Bắt đầu bằng quyết định cuối cùng trong trò chơi  Xác định chiến lược mà người chơi sẽ chọn  Cắt bớt cây trò chơi:  Loại bỏ chiến lược bị lấn át  Lặp lại quá trình trên cho đến khi xác định được quyết định của người chơi đầu tiên 5012/13/2012 GVC: PHAN THẾ CÔNG 12/13/2012 26 Hai hãng quyết định sản lượng  Hai hãng độc quyền cạnh tranh nhau về sản lượng  Hàm cầu thị trường là P = 30 – Q  Trong đó Q = Q1 + Q2  Giả định cả hai hãng có chi phí biên bằng 0  Cân bằng Cournot xảy ra khi hai hãng đều quyết định sản lượng Q1 = Q2 = 10 và lợi nhuận mỗi hãng là 100  Nếu hãng 1 quyết định trước Q1 = 15 và Q2 = 7,5, lợi nhuận tương ứng là 112,5 và 56,25 5112/13/2012 GVC: PHAN THẾ CÔNG Hai hãng quyết định sản lượng Hãng 2 7,5 10 15 Hãng 1 7,5 112,5; 112,5 93,75; 125 56,25; 112,5 10 125; 93,75 100; 100 50; 75 15 112,5; 56,25 75; 50 0; 0 5212/13/2012 GVC: PHAN THẾ CÔNG
Tài liệu liên quan