Cảm biến sinh học dựa trên hiện tượng điện tử spin

Sự nhận biết có tính chọn lọc và mô tả định lượng của tất cả các loại phân tử sinh học đóng vai trò quan trọng trong khoa học sinh học, trong chuẩn đoán lâm sàng, nghiên cứu y tế, và cả trong việc kiểm soát ô nhiễm môi trường. Gần đây, ý tưởng của việc tích hợp tất cả những quá trình phân tích trên thành một thiết bị cầm tay dễ sử dụng, có thể cho kết quả ngay lập tức tại vị trí cần phân tích, đã nhận được rất nhiều sự quan tâm từ các nhà nghiên cứu và các công ty công nghệ sinh học. Từ đó một hệ thống dạng lab-on-chip có tên “biosensor” được đưa ra để đơn giản hoá có hiệu quả nhiều nhiệm vụ trong các lĩnh vực điều trị y tế hoặc nghiên cứu sinh học, và thậm chí có thể mở ra những ứng dụng hoàn toàn mới. Biosensor là một thiết bị phát hiện, nhận dạng, và truyền thông tin về một sự thay đổi sinh-lý, hay sự có mặt của các chất hóa học khác nhau, hoặc những vật liệu sinh học trong môi trường. Chúng có thể phát hiện và đo chính xác những nơi tập trung của vi khuẩn hay những chất hóa học nguy hiểm. Biosensor sử dụng nhiều phương pháp dò tìm khác nhau. Biosensor có thể được chia làm hai kiểu chính: một là vẫn sử dụng phương pháp đánh dấu, một là thử sử dụng phương pháp phát hiện sự lai hóa trực tiếp. Trước đây, phương pháp chính là sử dụng phương pháp dò tìm huỳnh quang (biosensor huỳnh quang). Tuy nhiên một vài năm trở lại đây, với sự phát triển mạnh mẽ của một công nghệ mới: spintronic (điện tử học spin) đã tạo ra một sự phát triển mới cho các chíp sinh học spintronic với ưu điểm vượt trội là độ nhạy cao hưởng ứng nhanh dễ tích hợp, dễ tự động hóa đã thay thế việc đánh dấu bằng huỳnh quang truyền thống đắt tiền. Bằng cách sử dụng hạt từ được điều khiển bởi dòng điện ta có thể phân tích được nhiều mẫu sinh học chúng ta có thể sử dụng hạt từ để phát hiện các tương tác sinh học. Việc dò tìm các hạt từ có thể sử dụng cảm biến từ điện trở dị hướng (AMR), cảm biến từ điện trở khổng lồ (GMR), cảm biến spin-valve, cảm biến điện trở Hall mặt phẳng (PHR), cảm biến từ điện trở xuyên ngầm (TMR). Hầu hết các cảm biến từ điện trở đều dựa trên hiệu ứng từ - điện trở.

doc22 trang | Chia sẻ: hongden | Lượt xem: 1560 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Cảm biến sinh học dựa trên hiện tượng điện tử spin, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN KHOA KHOA HỌC VẬT LIỆU BỘ MÔN KHOA HOC VÀ CÔNG NGHỆ VẬT LIỆU CẢM BIẾN SINH HỌC DỰA TRÊN HIỆN TƯỢNG ĐIỆN TỬ SPIN Nhóm 10: Bùi Duy khánh Nguyễn Thị Thu NỘI DUNG TỔNG QUÁT: Các khái niệm Định nghĩa công nghệ spintronics Khái niệm cảm biến, cảm biến sinh học Cảm biến sinh học dựa trên hiện tượng điện tử spin Những kiểu biosensor truyền thống Cảm biến sinh học dựa trên hiện tượng điện tử spin Nguyên lý chung Ưu điểm của cảm biến sinh học sử dụng công nghệ điện tử học spin Những kiểu cảm biến sinh học dựa trên công nghệ điện tử học spin MỞ ĐẦU Sự nhận biết có tính chọn lọc và mô tả định lượng của tất cả các loại phân tử sinh học đóng vai trò quan trọng trong khoa học sinh học, trong chuẩn đoán lâm sàng, nghiên cứu y tế, và cả trong việc kiểm soát ô nhiễm môi trường. Gần đây, ý tưởng của việc tích hợp tất cả những quá trình phân tích trên thành một thiết bị cầm tay dễ sử dụng, có thể cho kết quả ngay lập tức tại vị trí cần phân tích, đã nhận được rất nhiều sự quan tâm từ các nhà nghiên cứu và các công ty công nghệ sinh học. Từ đó một hệ thống dạng lab-on-chip có tên “biosensor” được đưa ra để đơn giản hoá có hiệu quả nhiều nhiệm vụ trong các lĩnh vực điều trị y tế hoặc nghiên cứu sinh học, và thậm chí có thể mở ra những ứng dụng hoàn toàn mới. Biosensor là một thiết bị phát hiện, nhận dạng, và truyền thông tin về một sự thay đổi sinh-lý, hay sự có mặt của các chất hóa học khác nhau, hoặc những vật liệu sinh học trong môi trường. Chúng có thể phát hiện và đo chính xác những nơi tập trung của vi khuẩn hay những chất hóa học nguy hiểm. Biosensor sử dụng nhiều phương pháp dò tìm khác nhau. Biosensor có thể được chia làm hai kiểu chính: một là vẫn sử dụng phương pháp đánh dấu, một là thử sử dụng phương pháp phát hiện sự lai hóa trực tiếp. Trước đây, phương pháp chính là sử dụng phương pháp dò tìm huỳnh quang (biosensor huỳnh quang). Tuy nhiên một vài năm trở lại đây, với sự phát triển mạnh mẽ của một công nghệ mới: spintronic (điện tử học spin) đã tạo ra một sự phát triển mới cho các chíp sinh học spintronic với ưu điểm vượt trội là độ nhạy cao hưởng ứng nhanh dễ tích hợp, dễ tự động hóa đã thay thế việc đánh dấu bằng huỳnh quang truyền thống đắt tiền. Bằng cách sử dụng hạt từ được điều khiển bởi dòng điện ta có thể phân tích được nhiều mẫu sinh học chúng ta có thể sử dụng hạt từ để phát hiện các tương tác sinh học. Việc dò tìm các hạt từ có thể sử dụng cảm biến từ điện trở dị hướng (AMR), cảm biến từ điện trở khổng lồ (GMR), cảm biến spin-valve, cảm biến điện trở Hall mặt phẳng (PHR), cảm biến từ điện trở xuyên ngầm (TMR). Hầu hết các cảm biến từ điện trở đều dựa trên hiệu ứng từ - điện trở. Một số khái niệm Khái niệm cảm biến, cảm biến sinh học Bộ cảm biến Bộ cảm biến là thiết bị điện tử cảm nhận những trạng thái hay quá trình vật lý hay hóa học ở môi trường cần khảo sát, và biến đổi thành tín hiệu điện để thu thập thông tin về trạng thái hay quá trình đó. Thông tin được xử lý để rút ra tham số định tính hoặc định lượng của môi trường, phục vụ các nhu cầu nghiên cứu khoa học kỹ thuật hay dân sinh và gọi ngắn gọn là đo đạc, phục vụ trong truyền và xử lý thông tin, hay trong điều khiển các quá trình khác. Cảm biến thường được đặt trong các vỏ bảo vệ tạo thành đầu thu hay đầu dò (probe), có thể có kèm các mạch điện hỗ trợ, và nhiều khi trọn bộ đó lại được gọi luôn là "cảm biến" . Cảm biến sinh học Cảm biến sinh học là thiết bị sử dụng các tác nhân sinh học như enzym, các kháng thể, ... để phát hiện, đo đạc hoặc phân tích hoá chất . Theo IUPAC (International Union of Pure and Applied Chemistry) thì: “Cảm biến sinh học (biosensor) là một thiết bị tích hợp có khả năng cung cấp thông tin phân tích định lượng hoặc bán định lượng đặc trưng, bao gồm phần tử nhận biết sinh học (bioreceptor) kết hợp trực tiếp với một phần tử chuyển đổi ” Phần nhận biết tín hiệu sinh học giống như chuyển đổi sẽ biến đổi tín hiệu nhận được thành tín hiệu điện đo được. Hai thành phần này sẽ được tích hợp vào một cảm biến ta có thể thấy trên hình 1. Sự kết hợp này cho phép nó có thể đo mục tiêu cần phân tích mà không cần sử dụng thuốc thử Cấu tạo chung của cảm biến sinh học Cấu tạo chung của một cảm biến sinh học bao gồm bốn bộ phận chính: (B) Đầu thu sinh học: có tác dụng bắt cặp và phát hiện sự có mặt của các tác nhân sinh học cần phân tích; (B) Tác nhân cố định: giúp gắn các đầu thu lên trên điện cực; (C) Bộ phận chuyển đổi tín hiệu giúp chuyển các biến đổi sinh học thành các tín hiệu có thể đo đạc được; (D) Bộ phận xử lý, đọc tín hiệu ra (bộ phận này có tác dụng chuyển thành các tín hiệu điện để máy tính và các thiết bị khác có thể xử lý). Tác nhân cần phát hiện được phân loại theo cấu tạo như sau Các vi khuẩn: các vi khuẩn thường được phát hiện bởi các cảm biến sinh học là vi khuẩn Ecoli, vi khuẩn Candida, vi khuẩn bệnh than Các phân tử nhỏ: các phân tử nhỏ mà cảm biến sinh học có thể phát hiện được là CO, CO2, phân tử gluco, phân tử rượu, ure, thuốc trừ sâu, amino axit, paracetamol, aspirin, penicilin, TNT, các tác nhân thần kinh khác, Các phân tử sinh học có kích thước lớn: những phân tử này có thể là các phân tử ADN, RNA, protein, enzyme, các hocmon, Đầu thu sinh học Nhiều cảm biến sinh học sử dụng các kết hợp đã được phát triển rất cụ thể cho các ứng dụng. Có hai loại đầu thu sinh học. Đầu tiên, các cảm biến sinh học sử dụng các enzyme hoặc kháng thể oligonucleotid, ví dụ các chất có nguồn gốc sinh học, được thiết kế để thực hiện một chức năng cụ thể trong cơ thể sống. Do vậy, chúng được sử dụng để phát hiện một chất cụ thể. Ngoài ra còn có những đầu thu sinh học có thể được mô tả giả như ngược với đầu thu sinh học tự nhiên, thông qua các phương pháp điện hoá có thể phát hiện một số chất. Đầu thu sinh học (Biological Receptor) là những đầu thu phản ứng trực tiếp với các tác nhân cần phát hiện và có nguồn gốc từ các thành phần sinh học. Dựa vào các tác nhân sinh học sử dụng người ta chia ra thành một số loại đầu thu như sau: - Đầu thu làm từ enzyme: Đầu thu sinh học làm từ enzyme là dạng đầu thu phổ biến nhất. Đó là các đầu thu làm từ các enzyme urease, glucose, ... - Đầu thu làm từ các kháng thể/kháng nguyên: Các đầu thu dạng này có đặc điểm là tính chọn lọc rất cao đồng thời các liên kết được tạo thành khá mạnh. - Đầu thu làm từ protein: Rất nhiều cảm biến có đầu thu sinh học làm từ các protein như cảm biến phát hiện hocmôn, xác định các chất kích thích thần kinh, ... Các đầu thu này có đặc điểm là có tính chọn lọc rất cao. Tuy nhiên, chúng có nhược điểm là rất khó cách ly. - Đầu thu làm từ các axit nucleic: Các axit nucleic như ADN, ARN có thể sử dụng làm đầu thu sinh học. Các cảm biến có đầu thu dạng này thường được sử dụng để phát hiện đột biến và các sai lệch trong cấu trúc di truyền. - Đầu thu kết hợp: Với các đầu thu dạng này, người ta sử dụng đồng thời hai hay nhiều các phân tử dạng (enzyme, kháng thể, protein, ...) trên một đế. Việc kết hợp này mở rộng khả năng làm việc của các cảm biến sinh học. Một số cảm biến dạng này là cảm biến xác định thuốc nổ TNT, cảm biến xác định vi khuẩn bệnh than và cảm biến thử thai. - Đầu thu làm từ tế bào: Các đầu thu sinh học không chỉ được làm từ các phân tử, nguyên tử mà nó còn có thể được làm từ các tế bào. Một số tế bào biến đổi gen của vi khuẩn đã được sử dụng làm đầu thu sinh học. Khi có mặt các phân tử chất độc, các tế bào này sẽ phát sáng, thông qua đó chúng ta xác định được sự xuất hiện của các phân tử chất độc. Tác nhân cố định Các tác nhân cố định là một phần rất quan trọng trong cảm biến sinh học. Các tác nhân này có nhiệm vụ gắn kết các đầu thu sinh học lên trên đế. Nói một cách khác đây là bộ phận trung gian có tác dụng liên kết các thành phần sinh học (có nguồn gốc từ cơ thể sống) với thành phần vô cơ.  Bộ phận chuyển đổi  Đây là bộ phận quan trọng trong cảm biến sinh học. Có nhiều dạng chuyển đổi như chuyển đổi điện hoá, chuyển đổi quang, chuyển đổi nhiệt, chuyển đổi bằng tinh thể áp điện hoặc chuyển đổi bằng các hệ vi cơ. Chuyển đổi điện hoá bao gồm chuyển đổi dựa trên điện thế (potentiometric), dòng điện (amperometric) và độ dẫn (conductometric). Chuyển đổi quang là chuyển đổi hoạt động dựa trên các hiệu ứng như: hấp thụ ánh sáng nhìn thấy và tia UV; phát xạ huỳnh quang và lân quang; bio–luminiscence; chemi–luminiscence.. Chuyển đổi nhiệt hoạt động dựa trên hiện tượng thay đổi entanpi khi hình thành hoặc phá vỡ các liên kết hóa họctrong các phản ứng của enzyme. Bộ chuyển đổi này có ưu điểm hoạt động tốt với tất cả các phản ứng. Tuy nhiên, dạng chuyển đổi này có tính chọn lọc thấp.  Chuyển đổi bằng tinh thể áp điện (piezoelectric) hoạt động dựa trên nguyên lý: tinh thể sẽ thay đổi tần số dao động khi lực tác dụng lên nó thay đổi. Chuyển đổi dạng này có ưu điểm là độ nhạy cao (cỡ picogam), thời gian phản ứng nhanh, khả năng cơ động cao, có thể sử dụng đo đạc trong môi trường lỏng và khí. Chuyển đổi bằng các hệ vi cơ Nguyên lý hoạt động của cảm biến sử dụng chuyển đổi này như sau: chiếu một chùm laser đến bộ phản xạ trên bề mặt một thanh dầm rất mỏng, ánh sáng phản xạ được thu nhận bởi photodetector. Thanh mỏng này được chế tạo sao cho chỉ với một lực tác động rất nhỏ cũng làm cho thanh bị uốn cong đi. Như vậy tín hiệu phản xạ thu nhận được trên photodetector sẽ bị thay đổi so với trường hợp không có lực tác dụng lên thanh. Căn cứ vào sự thay đổi tín hiệu phản xạ này, người ta có thể xác định được lực tác dụng lên thanh Mô hình cấu tạo của 1 cảm biến từ: Định nghĩa công nghệ Spintronics Công nghệ Spintronics chính là sự kết hợp của hai lĩnh vực điện tử học và từ học nhằm tạo ra các chức năng mới cho vi điện tử hiện đại. Công nghệ Spintronics là một kỹ thuật liên ngành với một mục tiêu chính là thao tác và điều khiển các bậc tự do của spin trong các hệ chất rắn. Nói một cách đơn giản, công nghệ Spintronics là một ngành nghiên cứu mới nhằm tạo ra các linh kiện mới dựa trên việc điều khiển và thao tác spin của điện tử. Mục tiêu quan trọng của công nghệ Spintronics là hiểu về cơ chế tương tác giữa spin của các hạt và môi trường chất rắn, từ đó có thể điền khiển cả về mật độ cũng như sự chuyển vận của dòng spin trong vật liệu. Sơ lược về các thế hệ Spintronics Một cách tương đối, có thể chia các linh kiện spintronics thành 3 thế hệ: Thế hệ thứ nhất: Gồm các linh kiện dựa trên các hiệu ứng GMR, TMR, trong các màng mỏng đa lớp, các màng mỏng từ tiếp xúc dị thể kim loại-kim loại hoặc kim loại-điện môi..., ví dụ như các cảm biến, đầu đọc từ điện trở trong các đĩa cứng, các bộ nhớ RAM từ điện trở (MRAM), các transitor kim loại (hay transitor lưỡng cực), transitor valse spin, công tắc/khoá đóng mở spin, ... Thế hệ thứ hai: Bao gồm các linh kiện hoạt động dựa trên việc tiêm hoặc bơm dòng phân cực spin qua tiếp xúc dị thể bán dẫn- sắt từ hay bán dẫn từ- bán dẫn (điều này giúp cho việc tận dụng được các kỹ thuật vi điện tử hiện nay). Đó là các mạch khoá siêu nhanh, các bộ vi xử lý spin và mạch logic lập trình được,... Các linh kiện này sử dụng các vật liệu bán dẫn pha loãng từ, bán dẫn sắt từ hay các bán kim, các linh kiện vận chuyển đạn đạo (ballistic electron transport) sử dụng hiệu ứng từ điện trở xung kích, và các loại transistor spin như ở thế hệ thứ nhất. Một thế hệ linh kiện spin mới đang được phát triển mạnh và rất có triển vọng hiện nay là các bộ nhớ từ và các cổng lôgic dựa trên điều khiển vách đômen để tạo thành các bit thông tin trong các cấu trúc nano từ tính. Bạn có thể tưởng tượng, thông tin được mã hoá 0 và 1 thông qua sự định hướng của các mômen từ trong các đômen. Sự điều khiển các vách đômen chính là điều khiển các bit thông tin. Vách đômen có thể điều khiển dễ dàng bằng từ trường hoặc dòng điện. Và hiện nay, hướng spintronics này mục tiêu là tạo ra, và điều khiển các quá trình dịch chuyển, hãm, huỷ... các vách đômen trong các phần tử nhỏ (ví dụ các nanowire, các nanodot, các bẫy đômen) Thế hệ thứ ba: Là các linh kiện sử dụng các cấu trúc nano (dạng chấm lượng tử, dây và sợi nano) và sử dụng các trạng thái spin điện tử đơn lẻ như cổng logic lượng tử (là cơ sở cho máy tính lượng tử), các transistor đơn spin (SFET), ... Cảm biến van spin thuộc thế hệ linh kiện đầu tiên đã được chế tạo và đưa vào sử dụng ở mức độ thương phẩm từ cuối thế kỷ 20. Một số linh kiện điển hình của thế hệ này là kính hiển vi từ điện trở, robot xúc giác hay robot thông minh, đầu đọc ghi ổ cứng tốc độ cao, phím bấm không tiếp xúc, động cơ không chổi than, giải mã vạch, đếm tốc độ,điều chỉnh đánh lửa bugi động cơ đốt trong máy trợ thính, ... Các bộ nhớ MRAM không tự xóa đang bắt đầu có sản phẩm thương phẩm, và được dự đoán là sẽ chiếm lĩnh thị trường thương mại và tiêu dùng trong những năm gần đây. Hiện nay việc phòng chống tội phạm và khủng bố đang rất được ngành an ninh và quân đội quan tâm. Ngành tư pháp và quân đội Mỹ đã có những dự án nghiên cứu chế tạo các thiết bị điện tử nhạy với từ trường yếu theo nguyên lý của spintronics, đến mức có thể đo được từ xa từ trường có cường độ chỉ cỡ femto-Tesla Tiểu kết: trong bài này, chúng ta đang tìm hiểu về cảm biến sinh học dựa trên hiện tượng điện tử spin. Nghĩa là bộ phận chuyển đổi của cảm biến sinh học ứng dụng bởi công nghệ spintronics tạo ra 1 lĩnh vực mới rất được quan tâm trong công nghệ sinh học và y sinh học. Như việc nhận biết các phân tử sinh học đã đóng một vai trò rất quan trọng trong ngành công nghiệp dược phẩm, phân tích môi trường và nhiều ứng dụng rộng rãi của công nghệ sinh học. Đặc biệt, còn mở ra một khả năng lớn trong việc phát triển các công cụ vừa có giá trị sử dụng cao vừa có giá thành rẻ dùng cho việc nhận biết lai hóa AND - ADN trong chuẩn đoán các bệnh về gen, nhận biết biến dị hoặc mô tả định lượng của gen và nhận biết tương tác kháng thể - kháng nguyên trong nhận dạng các vi sinh vật và vũ khí sinh học. Cảm biến sinh học dựa trên hiện tượng điện tử spin Trước đây, biosensor đã thành công với phương pháp đánh dấu huỳnh quang. Tuy nhiên, nhờ sự phát triển của điện tử học spin, thay vì nhận biết các phân tử sinh học bằng các công cụ đắt tiền như các hệ quét huỳnh quang quang học hay lazer, chúng ta có thể sử dụng các loại cảm biến ứng dụng công nghệ điện tử học spin dựa trên các hiệu ứng GMR, AMR, TMR, Hall, Planar Hall,... Những kiểu biosensor truyền thống Trước đây loại cảm biến phổ biến nhất là cảm biến sinh học sử dụng phương pháp huỳnh quang, có cấu tạo chung như sau: - Một dãy các đầu dò được gắn cố định trên bề mặt cảm biến bằng những chấm mirco (thường là các hạt huỳnh quạng). - Buồng lai hóa (thường là một hệ thống vi rãnh, còn gọi là vi kênh chứa chất lỏng có kích thước mirco). - Một cơ cấu để sắp xếp các DNA đích tùy chọn theo dãy (tạo điện trường cho các phân tích phân tử tích điện như DNA hoặc các dãy đường dẫn tạo từ trường cho các DNA đích gắn hạt từ). - Các hạt dò tìm. Trên hình 2 mô tả quá trình dò tìm bằng phương pháp đánh dấu huỳnh quang, gồm 3 giai đoạn: - Cố định đầu dò trên bề mặt chip. - Nhỏ dung dịch có chứa các DNA đích cần dò tìm. - Các phân tử sinh học là phần bù của nhau sẽ liên kết với nhau, quá trình lai hóa xảy ra và sau đó rửa sạch các phần tử không cần thiết. Phương pháp này cho ta biết số lượng gen xác định và so sánh sự khác nhau giữa các mẫu cần phân tích. Sự dò tìm này không những cho biết được sự có mặt của phân tử bị bệnh mà còn cho biết được số lượng của các phân tử đó trong mẫu. Cảm biến sinh học theo công nghệ điện tử spin Nguyên lí chung: Một chip sinh học (biochip) sử dụng công nghệ spin điện tử cơ bản gồm có một dãy các phần tử cảm biến (như các cảm biến từ-điện trở); một dãy các đầu dò (các phân tử sinh học đã biết như các chuỗi nucleotide đặc trưng của các gen hoặc các kháng thể) được cố định trên bề mặt của các sensor (thông qua các chấm có kích thước mirco hoặc các dãy được sắp xếp theo đặc trưng điện hoặc từ); một buồn lai hóa (thường là một bộ ráp nối các rãnh chứa chất lỏng có kích thước mirco); một cơ cấu dùng để sắp xếp các bia (target) tùy chọn theo dãy (tạo điện trường cho các phân tích phân tử tích điện như DNA hoặc các dãy đường dẫn tạo từ trường cho các bia được gắn hạt từ) (hình 3). Hình 3.  Sơ đồ một biochip sử dụng công nghệ spin điện tử, bao gồm một dãy các bộ chuyển tín hiệu sử dụng công nghệ spin điện tử, một dãy đầu dò phân tử sinh học được cố định trên bề mặt sensơ (trong trường hợp này là các phân tử ADN đơn), dung dịch chứa các phân tử  cần dò (các chuỗi ADN) và các hạt từ được có thể liên kết được với bề mặt cảm biến thông qua thông qua các lai hóa phân tử sinh học (các lai hóa ADN). Ở hình bên cạnh, nhận dạng phân tử sinh học đạt được bằng cách nhận biết từ trường tán xạ tạo bởi label từ nhờ bộ chuyển tín hiệu sử dụng công nghệ spin điện tử. Các đối tượng dò tìm (phân tử sinh học trong mẫu dùng để nhận dạng như chuỗi DNA, phần bù phù hợp của các đầu dò DNA cố định hoặc các kháng nguyên tương ứng với các kháng thể cố định) được nhỏ lên trên bề mặt chip để quá trình nhận dạng được tiến hành. Các phân tử sinh học có thể được gắn hạt từ tính trước hoặc sau bước lai hóa (recognition). Các hạt từ thường là các hạt siêu thuận từ hoặc sắt từ không có từ dư với kích thước nano hoặc mirco và có khả năng gắn kết với các phân tử sinh học. Dưới tác dụng của từ trường, các hạt này sẽ bị từ hóa và từ độ tổng hợp xuất hiện. Từ trường sinh ra từ các hạt từ bị từ hóa có thể thay đổi điện trở của cảm biến sử dụng công nghệ spin điện tử, do đó có thể giúp ta nhận biết được các phân tử sinh học cần phân tích. Các chip sinh học (biochip) dựa trên hiệu ứng từ điện trở được giới thiệu lần đầu vào năm 1998 ở phòng thí nghiệm nghiên cứu hải quân (NRL) của Mỹ. Sau đó trên thế giới phát triển thêm nhiều phòng nghiên cứu và các công ty phát triển hệ thống này. Việc nhận biết hạt từ được hoàn thiện băng cách sử dụng các cảm biến tích hợp từ điện trở có cấu trúc và hình dạng khác nhau như GMR hình que, cấu trúc GMR hình gấp khúc (meander GMR structures) và các GMR hình xoắn ốc; các cấu trúc van spin đường thẳng, hình răng lược và hình chữ U; các vòng AMR; cảm biến hình chữ thập sử dụng hiệu ứng Hall mặt phẳng; và các tiếp xúc từ xuyên ngầm. Các cấu trúc này còn cho phép sử dụng từ trường để điều khiển độ chính xác và các thao tác trên chip, kết hợp sự truyền dẫn tín hiệu với việc dò tìm. Nguyên lý của biochip sử dụng công nghệ spin điện tử đã được sử dụng để dò tìm các biểu hiện của các phân tử sinh học (bao gồm các liên kết sinh học) trong các mô hình liên kết như liên kết biotin-streptavidin, immunoglobulinG-Protein A (ví dụ cystic fibrosis-bệnh xơ nang), trong các phát triển ứng dụng dùng cho việc dò tìm các tế bào từ vi sinh vật gây bệnh. Cấu trúc của hai chip sử dụng sự lai hóa có hỗ trợ của từ trường và việc dò tìm các DNA cần dò có liên quan tới bệnh xơ nang là kết quả thu được trong quá trình nghiên cứu thử nghiệm chip với các DNA phần bù với các DNA cần dò tìm. Sau khi nhỏ các phân tử sinh học có đính hạt từ lên bề mặt cảm biến, một dòng điện được đặt vào trong khoảng 3 phút để thu hút các hạt vào khu vực cảm nhận, sau đó các hạt từ được giữ ổn định trong vòng 3 phút để quá trình lai hóa diễn ra. Chip được rửa để loại bỏ các hạt từ không có liên kết riêng hoặc liên kết yếu. Khi đó người ta thu được tín hiệu còn lại vào khoảng 1mV do lai hóa. Tín hiệu này tương ứng với 50 hạt nano liên kết với bề mặt. Khi sử dụng các phân tử sinh học cần dò không phải là phần bù của đầu dò, tín hiệu trở lại với đường nền nghĩa là không có sự lai hóa xảy ra. Các cảm biến cỡ nhỏ (2,6mm2) có dải hoạt động nhỏ chứa được vào khoảng 200 hạt nano với đường kính 250mm, nhưng cho tín hiệu trên từng hạt lớn hơn. Ưu điểm của cảm biến sinh học sử dụng công nghệ điện tử học spin: Tất cả các thiết bị điện tử học spin (spintronics) bao gồm cả những cảm biến điện tử học spin đều dựa trên việc điều khiển các spin của điện tử nên có những ưu điểm như sau: - Tiêu tốn ít năng lượng do quá trình biến đổi trong các thiết bị spintronics dựa trên sự đổi chiều của các spin. - Do tính chất phi từ của các phân tử sinh học nên giảm nhiễu tín hiệu. - Có độ ổn định cao, phép đo có thể thục hiện được nhiều lầ
Tài liệu liên quan