Đề tài Khai triển trực giao của hàm ngẫu nhiên

Xác Suất Thống Kê là lĩnh vực Toán học ứng dụng, nó đòi hỏi một cơ sở toán học sâu sắc. Ngày nay các mô hình Xác Suất đã thực sự được ứng dụng rộng rãi trong Khoa Học Tự Nhiên cũng như Khoa Học Xã Hội. Trong luận văn này, nghiên cứu về khai triển trực giao của hàm ngẫu nhiên. Về mặt lý thuyết chúng có nhiều tính chất thú vị liên hệ với các quá trình ngẫu nhiên khác.

doc79 trang | Chia sẻ: vietpd | Lượt xem: 1679 | Lượt tải: 2download
Bạn đang xem trước 20 trang tài liệu Đề tài Khai triển trực giao của hàm ngẫu nhiên, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
LỜI CẢM ƠN Lời đầu tiên tôi xin gởi đến Thầy – TS DƯƠNG TÔN ĐẢM lòng biết ơn sâu sắc về sự hướng dẫn và giúp đỡ của Thầy đối với tôi trong suốt thời gian học tập cũng như trong việc hoàn thành luận văn này. Thầy đã truyền đạt cho tôi những ý tưởng, cảm hứng về đề tài này. Thầy không những giúp đỡ tôi về chuyên môn mà còn giúp tôi về tinh thần trong những lúc tôi gặp khó khăn. Tôi cũng chân thành cảm ơn : * Các thầy cô trong bộ môn Xác Suất Thống Kê đặc biệt các Thầy PGS. TS NGUYỄN BÁC VĂN, TS TÔ ANH DŨNG, GS. TSKH NGUYỄN VĂN THU đã giảng dạy và truyền đạt cho tôi những kiến thức trong những năm học cao học.. * Quý Thầy Cô thuộc Khoa Toán - Tin trường Đại Học Khoa Học Tự Nhiên TPHCM đã tận tình hướng dẫn cung cấp tài liệu, trang bị nhiều kiến thức cần thiết cho tôi trong suốt thời gian học lớp cao học. * Tất cả các thầy trong hội đồng chấm luận văn đã dành cho tôi thời gian quý báu và những nhận xét cho buổi bảo vệ luận văn. * Các bạn học viên cao học Khóa 16 đã hổ trợ rất nhiều cho tôi về mọi mặt trong thời gian qua. Cuối cùng tôi xin chân thành cảm ơn gia đình và các bạn bè đã động viên, giúp đỡ và hỗ trợ tinh thần cho tôi trong suốt thời gian qua. TP Hồ Chí Minh, tháng 05 năm 2009 TRẦN THỊ VÂN ANH LỜI MỞ ĐẦU Xác Suất Thống Kê là lĩnh vực Toán học ứng dụng, nó đòi hỏi một cơ sở toán học sâu sắc. Ngày nay các mô hình Xác Suất đã thực sự được ứng dụng rộng rãi trong Khoa Học Tự Nhiên cũng như Khoa Học Xã Hội. Trong luận văn này, nghiên cứu về khai triển trực giao của hàm ngẫu nhiên. Về mặt lý thuyết chúng có nhiều tính chất thú vị liên hệ với các quá trình ngẫu nhiên khác. Về mặt ứng dụng chúng trở thành công cụ toán học có hiệu lực cho nhiều vấn đề trong các lĩnh vực khác nhau như toán học, vật lý, sinh học, cơ học, khoa học trái đất, kinh tế … Luận văn này gồm 3 chương : Chương 1 : “MỘT SỐ KIẾN THỨC CƠ BẢN “ Trong chương này nghiên cứu và nhắc lại kiến thức cơ bản cần cho luận văn này, cần đọc kỹ các khái niệm và nắm vững các kết quả như được mở đầu bằng việc giới thiệu không gian Hilbert gồm các biến ngẫu nhiên bình phương khả tích với vô hướng là hiệp phương sai của hai biến ngẫu nhiên, dùng phép chiếu trực giao để xây dựng phép xấp xỉ tuyến tính và lập phương trình dự đoán, tiếp theo nêu khái niệm kỳ vọng có điều kiện và chứng tỏ rằng kỳ vọng có điều kiện là dự đoán tốt nhất. Khai triển chính tắc của quá trình ngẫu nhiên cũng được nghiên cứu trong chương này. Ngoài ra còn nghiên cứu quá trình Wiener và tích phân Ito là hai khái niệm quan trọng khi nghiên cứu về quá trình ngẫu nhiên. Đây là những khái niệm cơ bản và là cơ sở để nghiên cứu những vấn đề tiếp theo. Chương 2 : “ ĐA THỨC HERMITE VÀ KHAI TRIỂN FOURIER – HERMITE “ Chương này nghiên cứu các định nghĩa, các tính chất và bổ đề của đa thức Hermite và tính chất của khai triển Fourier – Hermite. Một vài bổ đề ứng dụng được chứng minh trong chương này là công cụ chính để ta sử dụng tiếp cho chương sau. Chương 3 : “ QUÁ TRÌNH NGẪU NHIÊN DẠNG HERMITE ” Chương này mở rộng đa thức Hermite của chương 2 đó là nghiên cứu quá trình ngẫu nhiên dạng Hermite. Bắt đầu khái niệm về quá trình ngẫu nhiên dạng Hermite. Sau đó mở rộng khái niệm là xác định hàm Hermite chuẩn suy rộng, sử dụng chúng để thu được tập trực chuẩn đầy đủ trong và . Cuối cùng nghiên cứu và nêu được một số đặc tính của vi phân ngẫu nhiên đối với quá trình ngẫu nhiên dạng Hermite. MỤC LỤC Trang Lời cảm ơn ………………………………………………………………. 1 Lời nói đầu ………………………………………………………………. 2 Mục lục …………………………………………………………………... 4 CHƯƠNG I MỘT SỐ KIẾN THỨC CƠ BẢN………………………. 7 §1.1 Không gian …………………………………….. 7 1.1.1 Biến ngẫu nhiên ……………………………………… 7 1.1.2 Định nghĩa …………………………………………… 7 1.1.3 Định nghĩa ………………………………………….... 8 1.1.4 Tính chất ……………………………………………… 9 1.1.5 Định lý (Định lý về phép chiếu trong không gian Hilbert) 9 1.1.6 Tính chất của phép chiếu ………………………………... 12 1.1.7 Phép xấp xỉ tuyến tính trong L2………………………… 12 1.1.8 Phương trình dự đoán ………………………………… . 13 1.1.9 Kỳ vọng có điều kiện và dự đoán tốt nhất trong L2……… 14 §1.2 Khai triển chính tắc của quá trình ngẫu nhiên ………………….16 1.2.1 Quá trình ngẫu nhiên biểu diễn dưới dạng tổng các hàm ngẫu nhiên cơ bản……………………………………………… 16 1.2.2 Khai triển chính tắc quá trình ngẫu nhiên ……………… 18 1.2.3 Đưa quá trình ngẫu nhiên về dạng chính tắc…………… 20 1.2.4 Mốt số khai triển chính tắc đặc biệt…………………… 22 §1.3 Cơ sở trực giao và trực chuẩn trong không gian Hilbert………… 25 1.3.1 Định nghĩa (Trực giao và trực chuẩn) ………………25 1.3.2 Định nghĩa ( Cơ sở ) …………………………………… 25 1.3.3 Định nghĩa ( Cơ sở trực giao và trực chuẩn ) ………… 26 1.3.4 Định nghĩa ( Phép chiếu trực giao ) ………………………26 §1.4 Quá trình Wiener ……………………………………… 27 1.4.1 Định nghĩa ( Quá trình Wiener )………………………… 27 1.4.2 Các tính chất quá trình Wiener và độ đo …………………27 1.4.3 Quá trình Wiener n - chiều ……………………………… 37 §1.5 Tích phân Ito … ……………………………………………… 39 1.5.1 Định nghĩa ……………………………………………….. 39 1.5.2 Các tính chất cơ bản của tích phân Ito …………………… 40 1.5.3 Tích phân Ito nhiều chiều ……………………………… 43 1.5.4 Vi phân ngẫu nhiên của hàm hợp, công thức Ito …......... 44 CHƯƠNG 2 ĐA THỨC HERMITE VÀ KHAI TRIỂN FOURIER – HERMITE §2.1 Đa thức Hermite …………………………………………………..48 Định nghĩa ………………………………………………..48 Liên hệ giữa đa thức trực giao và đa thức Hermite ………49 Đạo hàm của đa thức Hermite ……………………………50 Các bổ đề của đa thức Hermite ………………………… 53 §2.2 Khai triển Fourier – Hermite của hàm biến ngẫu nhiên Gauss 57 2.2.1 Khai triển Fourier – Hermite …………………………57 2.2.2 Tính chất ……………………………………………… 58 CHƯƠNG 3 QUÁ TRÌNH NGẪU NHIÊN DẠNG HERMITE… 60 §3.1 Khái niệm về quá trình ngẫu nhiên dạng Hermite……………… 60 Định nghĩa ………………………………………………..60 Các ví dụ ………………………………………………… 60 §3.2 Tập trực chuẩn đầy đủ trong và …………… ... 62 Định nghĩa ……………………………………………… 62 Các tính chất …………………………………………… 62 Định nghĩa ………………………………………………. 64 Tính chất ………………………………………………… 65 §3.3 Một số đặc tính của vi phân ngẫu nhiên ………………………… 66 Định nghĩa ………………………………………………..66 Định lý ……………………………………………………67 Bổ đề …………………………………………………… 67 Hệ quả …………………………………………………… 69 Các tính chất của quá trình dạng Hermite……………… 70 KẾT LUẬN …………………………………………………… 74 TÀI LIỆU THAM KHẢO…………………………………….. 75 CHƯƠNG 1 MỘT SỐ KIẾN THỨC CƠ BẢN §1.1 KHÔNG GIAN Phần này giới thiệu không gian các biến ngẫu nhiên bình phương khả tích L2() 1.1.1 BIẾN NGẪU NHIÊN Biến ngẫu nhiên là đại lượng mà giá trị của nó phụ thuộc vào kết quả của thí nghiệm . Ta định nghĩa chính xác biến ngẫu nhiên là : Xét phép thử ngẫu nhiên với tập và - đại số F các biến cố Biến ngẫu nhiên là ánh xạ sao cho: hoặc : B với B là tập các tập Borel trong R . Ta chỉ xét những tập B sao cho là biến cố, tức F, khi đó lớp tất cả các biến cố là lớp biến cố cảm sinh bởi biến số ngẫu nhiên . 1.1.2 ĐỊNH NGHĨA Ta xét không gian xác suất và lớp các biến ngẫu nhiên bình phương khả tích được định nghĩa trên và thỏa mãn điều kiện : Khi đó, ta có : Mặt khác: Nên , ta cũng có : Kí hiệu là không gian Hilbert các đại lượng ngẫu nhiên X sao cho . Với hai phần tử ta định nghĩa tích vô hướng trong là . (1.1) Không gian là tập các lớp tương đương với tích vô hướng được định nghĩa theo công thức (1.1), mặt khác vì mỗi lớp tương đương được xác định duy nhất bằng cách lấy một phần tử bất kì nào đó của lớp làm đại diện nên ta vẫn dùng kí hiệu X, Y để chỉ các phần tử của , ta có thể dùng ngắn gọn và vẫn gọi đó là những biến ngẫu nhiên bình phương khả tích và ta chú ý rằng nếu chỉ có X thì hiểu rằng X là đại diện cho cả một lớp các biến ngẫu nhiên tương đương với X. 1.1.3 ĐỊNH NGHĨA Sự hội tụ trong L2 là sự hội tụ bình phương trung bình viết là nghĩa là, dãy các phần tử , được gọi là hội tụ đến X nếu và chỉ nếu : khi Để xây dựng tính đầy của L2 là không gian Hilbert ta còn phải xây dựng tính đầy của L2 nghĩa là nếu khi thì tồn tại sao cho: Ta xét tính chất : 1.1.4 TÍNH CHẤT Nếu và ; n = 1, 2, 3… thì tồn tại một biến ngẫu nhiên X trên sao cho . Chứng minh: Chọn = 0 Đặt Xn : = , khi đó theo bất đẳng thức Cauchy – Schward, ta có : E ( ) = Từ đó, suy ra tồn tại và giới hạn đó hữu hạn. Như thế tồn tại. 1.1.5 ĐỊNH LÝ (Định lý về phép chiếu trong không gian Hilbert) Nếu A là một không gian con đóng của không gian Hilbert H và thì: a) Tồn tại duy nhất một phần tử sao cho b)và nếu và chỉ nếu và x’ được gọi là chiếu (trực giao) của x lên A, viết là Định lý này được gọi là định lý về phép chiếu trực giao. Chứng minh: a) Nếu thì tồn tại một dãy , sao cho . Hơn nữa, với k, l bất kì thuộc không gian Hilbert, theo quy tắc đường chéo hình bình hành ta có : Do đó, xét Ta có: tức là: Mặt khác, vì: khi Từ đó theo tiêu chuẩn Cauchy, sao cho và vì A đóng nên và vì tính liên tục của tích vô hướng nên : Để chứng minh tính duy nhất của x’ ta giả sử có sao cho: khi đó dùng tính chất hình bình hành ta có : b) Nếu và thì x’ là phần tử duy nhất của A được định nghĩa trong a) vì với bất kỳ có : dấu “ = “ đạt được khi và chỉ khi . Ngược lại, nếu và thì x không là phần tử của A và có phần tử x’’ : với x’’ gần x’ hơn x, với y là phần tử bất kỳ của A sao cho: và Thật vậy, 1.1.6 TÍNH CHẤT CỦA PHÉP CHIẾU i) . ii) trong đó I là phép đồng nhất. iii) tồn tại duy nhất một biểu diễn: ; iv) khi và chỉ khi v) khi và chỉ khi . vi) nếu và chỉ nếu . vii) nếu và chỉ nếu . 1.1.7 PHÉP XẤP XỈ TUYẾN TÍNH TRONG L2 Giả sử X1, X2 và Y là những biến ngẫu nhiên trong L2, nếu chỉ có thể quan sát được X1, X2 mà ta ước lượng giá trị của Y bằng cách dùng tổ hợp tuyến tính: , sao cho sai sót M dưới đây có trung bình bình phương đạt giá trị nhỏ nhất, nghĩa là sao cho: min Ta có thể viết : . Lấy đạo hàm riêng của M lần lượt đối với ,, dẫn đến hệ phương trình cho nghiệm tối ưu (1.4) Ngoài ra, ta có thể dùng định lý hình chiếu trong không gian Hilbert L2 . Ta đặt vấn đề tìm phần tử Y’ trong tập đóng A : với , sao cho : với . Như vậy, theo định lí chiếu trong không gian Hilbert và Y’ thỏa điều kiện trên khi và chỉ khi và và do đó , tức là : Áp dụng tính chất của tích vô hướng đã định nghĩa ở trên ta suy ra (1.4). 1.1.8 PHƯƠNG TRÌNH DỰ ĐOÁN Cho không gian Hilbert , một tập con đóng và một phần tử , định lý chiếu trong không gian Hilbert khẳng định rằng tồn tại duy nhất một phần tử sao cho: (1.5) Phương trình (1.5 ) gọi là phương trình dự đoán và phần tử là dự đoán tốt nhất của X trong A. Hay ta có thể nói dự đoán tốt nhất của X trong A là chiếu của X trong A. 1.1.9 KỲ VỌNG CÓ ĐIỀU KIỆN VÀ DỰ ĐOÁN TỐT NHẤT TRONG L2 Như ta đã nói ở trên, nếu , thì khi và chỉ khi: khi Một số tính chất của sự hội tụ theo nghĩa bình phương trung bình Nếu thì khi i) ii) iii) Định nghĩa 1: ( Dự đoán bình phương trung bình tốt nhất của Y) Nếu A là một không gian con đóng của thì dự đoán bình phương tốt nhất của Y trong A được định nghĩa là phần tử sao cho : Định nghĩa 2: ( Kỳ vọng có điều kiện ) Nếu A là một không gian con đóng trong L2 và chứa các hàm hằng, nếu thì ta định nghĩa kỳ vọng có điều kiện của X với A cho trước là phép chiếu Mặt khác, vì toán tử là toán tử chiếu trên L2 nên có các tính chất phép chiếu : i) ii) nếu iii) nếu §1.2 KHAI TRIỂN CHÍNH TẮC CỦA QUÁ TRÌNH NGẪU NHIÊN 1.2.1 QUÁ TRÌNH NGẪU NHIÊN BIỄU DIỄN DƯỚI DẠNG TỔNG CÁC HÀM NGẪU NHIÊN CƠ BẢN Định nghĩa ( Hàm ngẫu nhiên cơ bản ) Hàm ngẫu nhiên cơ bản là hàm có dạng : (1.6) trong đó : C là một đại lượng ngẫu nhiên là hàm không ngẫu nhiên của biến số Các đặc trưng của hàm ngẫu nhiên cơ bản Kỳ vọng : trong đó : là kỳ vọng của đại lượng ngẫu nhiên C * Nếu thì * Khi xét các hàm ngẫu nhiên cơ bản có kỳ vọng bằng không , ta kí hiệu là => Hàm tự tương quan của hàm ngẫu nhiên cơ bản : trong đó : là phương sai của đại lượng ngẫu nhiên C Đối với các hàm ngẫu nhiên cơ bản, ta có các phép biến đổi tuyến tính + Phép toán đạo hàm : + Phép toán tích phân xác định : Nếu G là một toán tử tuyến tính , ta có : Định nghĩa ( Quá trình ngẫu nhiên theo các hàm cơ bản) Cho quá trình ngẫu nhiên : (1.7) trong đó : là các đại lượng ngẫu nhiên có kỳ vọng bằng 0, là kỳ vọng của . Biểu thức (1.7) được gọi là khai triển của quá trình ngẫu nhiên theo các hàm cơ bản. với : + các đại lượng ngẫu nhiên , được gọi là hệ số khai triển. + các hàm không ngẫu nhiên , được gọi là các hàm tọa độ. Đặc trưng của quá trình ngẫu nhiên theo các hàm cơ bản Giả sử biểu diễn được dưới dạng (1.7) , khi đó : Xét một toán tử tuyến tính G tác động lên , ta sẽ có : ` Đặt và Khi đó : Ta thu được theo các hàm cơ bản với các hệ số . Như vậy, nếu quá trình ngẫu nhiên khai triển dưới dạng tổng các hàm cơ bản, qua phép biến đổi tuyến tính G thì các hệ số khai triển không thay đổi, còn kỳ vọng và các hàm tọa độ bị tác động theo phép biến đổi tuyến tính. 1.2.2 KHAI TRIỂN CHÍNH TẮC CỦA QUÁ TRÌNH NGẪU NHIÊN Giả sử quá trình ngẫu nhiên khai triển dưới dạng : , trong đó : là các đại lượng ngẫu nhiên có kỳ vọng bằng 0 và ma trận tương quan . Xét hàm tự tương quan và phương sai của trong đó : Khi đó : với : ( được gọi là phương sai của ) Như vậy : (1.8) Đặt t = t’ ta có phương sai của : (1.9) * Chú ý : Nếu các hệ số không tương quan với nhau , nghĩa là = 0 () . Khi đó ta nói (1.7) là khai triển chính tắc của hàm ngẫu nhiên Nhận xét * Khai triển chính tắc của quá trình ngẫu nhiên là khai triển có dạng : trong đó : là kỳ vọng của quá trình ngẫu nhiên là các hàm tọa độ là các đại lượng ngẫu nhiên không tương quan với nhau và đều có kỳ vọng bằng 0 * Nếu có khai triển chính tắc thì hàm tự tương quan của nó có dạng là * Nếu có khai triển chính tắc thì phương sai của có dạng là : 1.2.3 ĐƯA QUÁ TRÌNH NGẪU NHIÊN VỀ DẠNG CHÍNH TẮC Cho quá trình ngẫu nhiên biểu diễn dưới dạng : (1.10) trong đó : là các hàm không ngẫu nhiên là các đại lượng ngẫu nhiên tương quan có ma trận tương quan : với : và Biểu thức dạng (1.10) của chưa phải là dạng chính tắc , do đó ta cần đưa nó về dạng chính tắc. Ta viết biểu thức(1.10) dưới dạng : Đặt : , , Khi đó: Biểu thức trên còn có thể viết dưới dạng : (1.11) với : và là các ma trận cột và T biểu diễn phép chuyển vị của ma trận Ma trận tương quan được viết dưới dạng : Chọn ma trận A sao cho vectơ : có các thành phần , là các đại lượng ngẫu nhiên không tương quan (1.12) với : là ma trận đường chéo mà các phần tử trên đường chéo là phương sai của , Biểu thức ( 1.12) ta thấy ma trận A đã chuyển ma trận tương quan về dạng đường chéo Ma trận là đối xứng và thực , vì vậy tồn tại ma trận trực giao A thỏa : Ta có : với : (do A là ma trận trực giao nên ) Như vậy ta có quá trình ngẫu nhiên được đưa về dạng chính tắc : MỘT SỐ KHAI TRIỂN CHÍNH TẮC ĐẶC BIỆT Khai triển Karhunen – Loéve Quá trình Wiener khai triển theo công thức : trong đó : là các đại lượng ngẫu nhiên độc lập có phân phối chuẩn : , là các hàm không ngẫu nhiên xác định bởi : * Dãy hàm có thể xem như một hệ trực chuẩn đầy đủ trong với : , * Mặt khác, dãy hàm có thể xem như hàm riêng của toán tử B được xác định bởi công thức: với Các giá trị riêng của toán tử B là : , i = 0, 1, 2 …. Khai triển theo các hàm Schauder Xác định các hàm Haar bởi các biểu thức sau : ………………………. Các hàm Haar tạo nên một hệ trực chuẩn đầy đủ trong . Tích phân các hàm Haar ta được các hàm Schauder Cho là dãy các đại lượng ngẫu nhiên độc lập có cùng phân phối chuẩn . Khi đó quá trình ngẫu nhiên xác định bởi sẽ là một chuyển động Brown tiêu chuẩn với §1.3 CƠ SỞ TRỰC GIAO VÀ TRỰC CHUẨN TRONG KHÔNG GIAN HILBERT 1.3.1 ĐỊNH NGHĨA ( Trực giao, trực chuẩn ) Hai phần tử x, y của không gian Hilbert được gọi là trực giao, nếu: . Cho tập hợp ta viết nếu mọi , . Phần bù trực giao cho tập S trong H, kí hiệu , là tập tất cả sao cho . Tích vô hướng trên không gian Hilbert H được xác định: Tập hợp hàm trong không gian H là tập trực giao nếu mọi phần tử là trực giao. Chẳng hạn, Nếu hàm đã được chuẩn hóa sao cho khi đó tập hợp được gọi là tập trực chuẩn. 1.3.2 ĐỊNH NGHĨA (Cơ sở) Nếu tập hợp bao gồm các hàm độc lập tuyến tính trong H được gọi là cơ sở của H. Số những phần tử cơ sở được gọi là chiều của H. Cho cơ sở của không gian Hilbert H, tồn tại với bất kì một tập duy nhất hệ số sao cho : (1.13) Hệ số này được gọi là hệ số khai triển của x đối với cơ sở B. Từ (1.13 ) viết đơn giản là: (1.14) 1.3.3 ĐỊNH NGHĨA (Cơ sở trực giao và trực chuẩn) Cơ sở trực giao của không gian Hilbert H là tập trực giao trong H. Nếu trong hàm cộng tính là chuẩn, chẳng hạn , khi đó nó là cơ sở trực chuẩn. Tính chất của cơ sở trực chuẩn là khai triển hệ số bởi tích vô hướng của x với hàm cơ sở trực chuẩn : (1.15) Bất kì tập hợp của hàm độc lập trong không gian Hilbert H có thể biến đổi thành tập trực chuẩn. Hiển nhiên bất kì tập trực giao có thể thành trực chuẩn do được chuẩn hóa đơn giản. Do đó, hầu như ta xét trực chuẩn hơn tập trực giao và cơ sở không mất tính tổng quát. Xét không gian con S của không gian Hilbert H. Khi đó ta xác định phép chiếu trực giao trên S như sau: 1.3.4 ĐỊNH NGHĨA ( Phép chiếu trực giao ) Xét cơ sở trực chuẩn của không gian con S của H. Phép chiếu trực giao của trên S, kí hiệu: , được cho: §1.4 QUÁ TRÌNH WIENER Quá trình Wiener là một ví dụ rất quan trọng đối với lý thuyết xác suất thống kê. Qua thí nghiệm của Brown quá trình ngẫu nhiên này được dùng làm mô hình chuyển động của hạt dưới tác động va chạm hỗn loạn của các phần tử . 1.4.1 ĐỊNH NGHĨA ( Quá trình Wiener ) Ta gọi quá trình là quá trình Wiener thỏa mãn các điều kiện sau: i) ( h.c ) ii) Với mọi các đại lượng ngẫu nhiên là đại lượng độc lập iii) W(t) có phân phối chuẩn với kỳ vọng bằng 0 và phương sai t iv) là quá trình liên tục, tức hầu hết các quỹ đạo của là hàm liên tục. * Một quá trình Wiener với tham số phương sai bằng 1 được gọi là quá trình Wiener tiêu chuẩn ( hay chuyển động Brown tiêu chuẩn ). * Nếu ta thay bởi ta sẽ có quá trình Wiener xuất phát từ x 1.4.2 CÁC TÍNH CHẤT QUÁ TRÌNH WIENER VÀ ĐỘ ĐO WIENER Tính chất 1: Nếu là quá trình Wiener khi đó : trong đó : Chứng minh: Giả sử, , ta sẽ có : Do có phân phối chuẩn và là độc lập với . □ Tính chất 2 : Cho và , trong đó và xác định : Khi đó : trong đó : là độ đo Lebesgue Chứng minh: Không mất tính tổng quát, giả sử với , khi đó: (1.16) Ta có: = Khi đó theo tính chất 1 ta có : Kết hợp (1.16) ta có : □ Tính chất 3: Với và , trong đó j = 1, 2, …, n : Chứng minh : Không mất tính tổng quát giả sử với Ta chứng minh tính chất này bằng phép quy nạp trên n. Với trường hợp , ta thấy rằng : (1.17) Thật vậy ,vế trái (1.17) = Đặt Khi đó vế trái (1.17) = = Vậy (1.17) thỏa mãn. Bằng phương pháp quy nạp ta giả thiết : (1.18) với mọi số k, ta chỉ ra rằng tính chất này đúng với Ta xét : trong đó: với và . Như vậy: = Do tính chất số gia độc lập của , khi ta có độc lập với mọi với Bởi vậy : = = do giả thiết (1.18). Khi có cùng phân phối với Ta có : = = từ cơ sở trên ta có công thức (1.17) Như vậy ta có: = (1.19) mà : = = (1.20) thay (1.20) vào (1.19) ta có: = . Bằng phép quy nạp ta suy ra điều phải chứng minh. Độ đo Wiener : Cho và xác định : . trong đó : là tập hợp Borel của đường thẳng thực với Khi đó : Chứng minh : Ta có: . Hơn nữa, có cùng phân phối với . Như vậy : kí hiệu là quá trình Wiener tại x, khi đó : Khi đó, do tính chất của số gia độc lập, ta có : Như vậy : Tính chất 4 : Tổng bình phương các gia số của quá trình Wiener ứng với phân hoạch của đoạn từ a đến b hội tụ đến b – a theo bình phương trung bình khi làm mịn phân hoạch : Chứng minh: Ta có : Do tính độc lập của ( i = 0,1,…, n – 1 ) Vậy : khi thì Từ đó : khi hay khi làm mịn phân hoạch Tính chất 5: Cho W(t) là quá trình Wiener tiêu chuẩn, khi đó quá trình : cũng sẽ là quá trình Wiener tiêu chuẩn. Chứng minh: Để chứng minh tính chất này ta dùng phương pháp hàm đặc trưng Khi
Tài liệu liên quan