Ngày nay, với sự bùng nổ của cuộc cách mạng khoa học kỹ thuật, việc tìm ra
nguồn nguyên liệu vừa rẻ tiền mà chất lƣợng không còn là trở ngại lớn nữa. Cũng nhƣ
vậy, thực phẩm dành cho ngƣời dần đƣợc thay thế bởi thực phẩm chứ c năng. Có thể nói
trong những năm gần đây, việc nghiên cứu tìm và khai thác các loại nguyên liệu nâng
cao giá trị dinh dƣỡng bổ sung vào thực phẩm ngày càng đƣợc quan tâm nhiều hơn.
Spirulina platensis cũng là một trong những mối quan tâm đó. Ngƣời ta nghiên cứu về
Spirulina platensis rất nhiều, không những vì chúng có giá trị dinh dƣỡng cao mà còn
bởi chúng có nhiều tác dụng trong cả y lẫn sinh học.
Theo Prescott, Gorrunov và cộng sự (1969) cho rằng, trong tƣơng lai y dƣợc và
những sự tìm kiếm trong y dƣợc, bao gồm cả việc nghiên cứu và thí nghiệm các tảo có
thể kể ra nhƣ việc tìm kiếm thuốc chữa ung thƣ, dị ứng, tảo tiết chất kháng sinh có thể
thay thế cho Penixilin. Trong tƣơng lai sẽ có môn chữa bệnh dùng tảo (Algotherapia hay
Phycotherapia) (trích dẫn bởi Nguyễn Văn Tuyên, 2003).
Việc tăng sinh khối tảo mà vẫn giữ đƣợc chất lƣợng tốt qui mô phòng thí nghiệm
sẽ là hƣớng mở áp dụng cho qui mô sản xuất công nghiệp, đồng thời có thể xác định
đƣợc ảnh hƣởng của các thành phần dinh dƣỡng cho sự phát triển tốt hơn của tảo.
Xuất phát từ những yêu cầu đó, chúng tôi thực hiện đề tài :” Khảo sát một số
phƣơng pháp tăng sinh khối giống tảo Spirulina platensis qui mô phòng thí nghiệm”.
83 trang |
Chia sẻ: oanhnt | Lượt xem: 1498 | Lượt tải: 4
Bạn đang xem trước 20 trang tài liệu Đề tài Khảo sát một số phƣơng pháp tăng sinh khối giống tảo Spirulina platensis qui mô phòng thí nghiệm, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƢỜNG ĐẠI HỌC NÔNG LÂM TP.HCM
BỘ MÔN CÔNG NGHỆ SINH HỌC
***000***
ĐỖ THỊ THANH HƢƠNG
KHẢO NGHIỆM MỘT SỐ PHƢƠNG PHÁP
TĂNG SINH KHỐI GIỐNG TẢO SPIRULINA PLATENSIS
Luận văn kỹ sƣ
Chuyên ngành: Công nghệ sinh học
Thành phố Hồ Chí Minh
Tháng 9/2006
BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƢỜNG ĐẠI HỌC NÔNG LÂM TP.HCM
BỘ MÔN CÔNG NGHỆ SINH HỌC
***000***
KHẢO NGHIỆM MỘT SỐ PHƢƠNG PHÁP
TĂNG SINH KHỐI GIỐNG TẢO SPIRULINA PLATENSIS
Luận văn kỹ sƣ
Chuyên ngành: Công nghệ sinh học
Giáo viên hƣớng dẫn: Sinh viên thực hiện:
PGS. TS. TRẦN THỊ DÂN Tên: BÙI THỊ NGỌC BÍCH
KS. NGUYỄN VĂN ÚT Khóa: 2002 – 2006
Thành phố Hồ Chí Minh
Tháng 9/2006
2
MINISTRY OF EDUCATION AND TRAINING
NONG LAM UNIVERSITY, HCMC
DEPARTMENT OF BIOTECHNOLOGY
***000***
TRYING SOME METHODS FOR INCREASING WEIGHT OF
SPIRULINA PLATENSIS IN THE LABORATORY
Graduation thesis
Major: Biotechnology
Professor: Student:
Ms.LE THI PHUONG HONG DO THI THANH HUONG
Term: 2002 – 2006
HCMC
9/2006
3
PHẦN I : MỞ ĐẦU
1.1 Đặt vấn đề
Ngày nay, với sự bùng nổ của cuộc cách mạng khoa học kỹ thuật, việc tìm ra
nguồn nguyên liệu vừa rẻ tiền mà chất lƣợng không còn là trở ngại lớn nữa. Cũng nhƣ
vậy, thực phẩm dành cho ngƣời dần đƣợc thay thế bởi thực phẩm chức năng. Có thể nói
trong những năm gần đây, việc nghiên cứu tìm và khai thác các loại nguyên liệu nâng
cao giá trị dinh dƣỡng bổ sung vào thực phẩm ngày càng đƣợc quan tâm nhiều hơn.
Spirulina platensis cũng là một trong những mối quan tâm đó. Ngƣời ta nghiên cứu về
Spirulina platensis rất nhiều, không những vì chúng có giá trị dinh dƣỡng cao mà còn
bởi chúng có nhiều tác dụng trong cả y lẫn sinh học.
Theo Prescott, Gorrunov và cộng sự (1969) cho rằng, trong tƣơng lai y dƣợc và
những sự tìm kiếm trong y dƣợc, bao gồm cả việc nghiên cứu và thí nghiệm các tảo có
thể kể ra nhƣ việc tìm kiếm thuốc chữa ung thƣ, dị ứng, tảo tiết chất kháng sinh có thể
thay thế cho Penixilin. Trong tƣơng lai sẽ có môn chữa bệnh dùng tảo (Algotherapia hay
Phycotherapia) (trích dẫn bởi Nguyễn Văn Tuyên, 2003).
Việc tăng sinh khối tảo mà vẫn giữ đƣợc chất lƣợng tốt qui mô phòng thí nghiệm
sẽ là hƣớng mở áp dụng cho qui mô sản xuất công nghiệp, đồng thời có thể xác định
đƣợc ảnh hƣởng của các thành phần dinh dƣỡng cho sự phát triển tốt hơn của tảo.
Xuất phát từ những yêu cầu đó, chúng tôi thực hiện đề tài :” Khảo sát một số
phƣơng pháp tăng sinh khối giống tảo Spirulina platensis qui mô phòng thí nghiệm”.
1.2 Mục đích nghiên cứu
Sử dụng một số phƣơng pháp khác nhau nhằm tăng sinh khối tảo mà vẫn giữ
đƣợc chất lƣợng tốt. Từ đó, tìm ra phƣơng pháp tốt nhất để có thể ứng dụng qui mô sản
xuất công nghiệp.
Thay đổi tỷ lệ các thành phần trong môi trƣờng nuôi cấy, khảo sát ảnh hƣởng của
nồng độ các thành phần đó tới sự tăng sinh tảo.
Lựa chọn phƣơng pháp thích hợp nhất cho khả năng thu hoạch tảo cao.
4
Mô tả nguyên tắc cấu tạo và nguyên lý hoạt động của máy khuấy từ việc thiết kế
máy khuấy tảo dung tích nhỏ.
1.3 Yêu cầu
- Khảo sát ảnh hƣởng của một số thành phần môi trƣờng nuôi cấy.
- Khảo sát đƣợc ảnh hƣởng của điều kiện nuôi cấy tới việc tăng sinh tảo.
- Khảo sát phƣơng pháp thu hoạch tảo.
- Khảo sát ảnh hƣởng của tỷ lệ nuôi cấy ban đầu tới việc thu hoạch tảo.
- Đề xuất đƣa ra mô hình máy khuấy tảo dung tích nhỏ.
5
PHẦN II : TỔNG QUAN TÀI LIỆU
2.1 Tảo Spirulina platensis
2.1.1 Lịch sử phát triển và các công trình gây nuôi tảo Spirulina trong và ngài
nƣớc
Con ngƣời từ xƣa đã dùng rong tảo làm thực phẩm, nhƣ ngƣời Trung hoa biết ăn
tảo biển từ 600 năm trƣớc công nguyên. Tƣơng tự ngƣời dân ở các quần đảo thuộc Nam
Thái Bình Dƣơng và ở Nhật Bản đã dùng nhiều giống tảo làm thực phẩm, nhƣ Porphyra,
Ulva, Alaria v.v...Có lẽ đó là những dân tộc sử dụng rong tảo sớm nhất trên thế giới này,
họ thu hái rong tảo tự nhiên và dùng làm rau ăn hay nguồn thực phẩm bổ dƣỡng.
Với tảo Spirulina đƣợc coi nhƣ của trời phú cho 2 sắc dân, Aztec – Mexico (Châu
Mỹ) và Kanembu, một bộ tộc thuộc Tchad (Châu Phi). Từ thời cổ xƣa, 2 bộ tộc trên đã
biết thu giống rong sống tự nhiên này sống trong các hồ nƣớc khoáng giàu kiềm để chế
biến thức ăn rất bổ dƣỡng nhƣ : bánh bao, nƣớc chấm, nấu canh soup. Trong giới khoa
học, có lẽ tảo này đƣợc mô tả và đặt tên là Spirulina do hình dạng xoắn lò so lần đầu
tiên năm 1827. Việc phát hiện và phát triển tảo ra khắp thế giới gắn liền với lịch sử tìm
ra Tân Thế Giới – Châu Mỹ của Christophe Colomb, năm 1492. Tiếp theo sự kiện này,
các bài viết về các loại thức ăn từ Spirulina của ngƣời Aztec, nhƣ món bánh Techuilatl
đƣợc truyền bá ở Châu Âu. (Lê Đình Lăng, 1999).
Năm 1931, Rich tham quan các hồ trong thung lũng Rift ở vùng Đông Châu Phi
nhận xét thấy môi trƣờng sinh thái của hồng hạc với thức ăn tự nhiên là tảo.
Năm 1940, Dangeard nhận ra rằng các bánh tảo xanh dùng làm nƣớc chấm hằng
ngày của dân các hồ cạnh vùng Chad với thức ăn của hồng hạc ở thung lũng Rift là một,
đó chính là tảo Spirulina.
Năm 1960, ông Duran – Chastel gặp khó khăn trong việc sản xuất Soude của
công ty Sosa Texcoco, ngẫu nhiên phát hiện ra một loại vi sinh vật làm chậm cơ chế kết
tinh của muối carbonate trong các bể bốc hơi, đó chính là tảo Spirulina. (Nguyễn Thanh
Bích Ngọc, Nguyễn Hồng Hạnh, 1997).
6
Tuy vậy, mãi đến năm 1960 khi Leonard & Comperé ngƣời Bỉ phân tích công bố
giá trị dinh dƣỡng của bánh Dihe, thức ăn của ngƣời Kanembu làm từ Spirulina chứa
hàm lƣợng protein rất cao, thì giới khoa học mới quan tâm nhiều hơn.
Năm 1963, giáo sƣ Clement thuộc Viện nghiên cứu dầu hỏa quốc gia Pháp là
ngƣời đầu tiên nghiên cứu thành công việc nuôi tảo Spirulina qui mô công nghiệp. Theo
nghiên cứu này, giống tảo Spirulina từ Tchad đƣợc sử dụng trong nuôi cấy với ý định
dùng CO2 rất dồi dào tại các mỏ khai thác dầu hoả. Vậy ngƣời Pháp đã đi tiên phong
trong việc nuôi nhân tạo Spirulina và thƣơng mại hoá sản phẩm này. Đặc biệt năm 1967,
những ngƣời tiên phong đó lại có dịp triển khai những nghiên cứu của mình, do báo cáo
của Clement đƣợc trình bày tại Hội nghị quốc tế về dầu hỏa tại Mexico đƣợc công ty
Sosa Texcoco thích thú. Liên doanh sản xuất công nghiệp tảo Spirulina sử dụng nguồn
nƣớc khoáng bicarbonat giữa Viện nghiên cứu dầu hỏa Pháp và công ty Sosa Texcoco
đƣợc thành lập. Từ đó đến nay, liên doanh này luôn dẫn đầu thế giới về lƣợng tảo
Spirulina ở quy mô công nghiệp. Kỹ nghệ nuôi trồng Spirulina và một số vi tảo khác
(Chlorella, Klamath,...) hoặc nấm sợi đã trở thành một lĩnh vực đƣợc đầu tƣ phát triển
trong công nghệ sinh học để tạo sinh khối protein.
Thực ra, Spirulina không phải là thứ tảo đƣợc nghiên cứu đầu tiên, mà là tảo
Chlorella. Nhƣ tại Hoa Kỳ, những năm 1948 – 1952 nhiều nghiên cứu nuôi tảo
Chlorella đƣợc triển khai. Đến năm 1970, giá trị của tảo Spirulina đƣợc công nhận, với
ƣu thế nhiều mặt, thì sự phát triển nuôi trồng ở quy mô công nghiệp giống tảo này nở rộ
ở nhiều quốc gia.
Tại Nhật Bản, đƣợc sự hỗ trợ kỹ thuật từ Hoa Kỳ tiến sỹ Nakamura tiến hành
những nghiên cứu sớm nhất vào năm 1968, với giống tảo mẹ từ Tchad. Phƣơng pháp
nuôi trồng công nghiệp Spirulina của ông đƣợc triển khai ở vài vùng của Nhật Bản, Thái
Lan và Hàn Quốc. Với đầu tƣ của nhiều công ty kinh doanh, các dự án này đã phát triển
thành những xí nghiệp chuyên sản xuất tảo Spirulina.
Tại Ấn Độ, nghiên cứu nuôi các giống tảo cũng đƣợc triển khai từ những năm
1960, đặc biệt mô hình nuôi Spirulina ở quy mô cộng đồng nhỏ (làng, xã), do Ripley D.
Fox khởi xƣớng phát triển khá tốt ở một số vùng nhƣ Karla Schechardy. R.D. fox, ngƣời
7
Pháp dày công nghiên cứu suốt 15 năm (1968 – 1983), và đã xây dựng đƣợc một phòng
thí nghiệm nghiên cứu Spirulina ở Pháp. Đồng thời sáng tạo đƣợc mô hình nuôi tảo
Spirulina, cung cấp tại chỗ cho việc phòng chống dinh dƣỡng trẻ em. Mô hình này đƣợc
nhiều nƣớc nghèo, đang phát triển nghiên cứu áp dụng nhƣ Peru, Togô... và Việt Nam.
Ngoài các nƣớc nêu trên, tảo Spirulina còn đƣợc phát triển ở nhiều quốc gia và
vùng lãnh thổ Trung Quốc, Singapore, Đài Loan, Bulgarie, Ukraina, Hà Lan, Italia, Tây
Ban Nha, Czech, Nam Phi, Chi Lê, Isarel, Maroc, Iran, Cuba, Hồng Kông, v.v...
Ở nƣớc ta, tảo Spirulina đƣợc di thực nhập giống lƣu giữ tại Viện Pateur Paris
Cộng Hoà Pháp, về nghiên cứu từ năm 1972 ở Viện Sinh Vật (Viện Khoa Học Việt
Nam). Nghiên cứu quy trình kỹ thuật nuôi trồng do Viện này chủ trì, cùng với sự tham
gia nghiên cứu về hoá học và giá trị dinh dƣỡng trị bệnh của Viện y học quân sự, về tác
dụng lâm sàng của Viện quân y 108 Hà Nội. Đề tài này ở mức độ phòng thí nghiệm, đã
cho một kết quả tiên lƣợng tốt về khả năng nuôi trồng này ở nƣớc ta theo mô hình ngoài
trời, không mái che, có sục khí carbonic (CO2), đồng thời khẳng định giá trị dinh dƣỡng
và chữa bệnh của Spirulina, mở hƣớng tiên phong cho các nghiên cứu về Spirulina.
Tới năm 1977, Viện sinh vật – nơi tiên phong của kỹ nghệ tảo Spirulina ở Việt
Nam, lại triển khai kết quả trên ở mức độ lớn hơn, khi đề tài này đƣợc sự đầu tƣ của nhà
nƣớc và các bộ có liên quan, và đặc biệt nơi đón nhận đó là xí nghiệp nƣớc suối Vĩnh
Hảo (Bình Thuận).
Tại đây đã sử dụng nguồn nƣớc suối khoáng giàu bicarbonat, natricarbonat thiên
nhiên, một lợi thế của địa phƣơng. Ngoài ra, còn sử dụng năng lƣợng sức gió để vận
hành hệ thống máy khuấy trộn môi trƣờng nuôi tảo. Tham gia nghiên cứu có trƣờng Đại
học Bách Khoa Hà Nội (chế tạo các thiết bị nuôi tảo), Viện y học quân sự, xí ngiệp dƣợc
phẩm TW 24 – Mekophar (bào chế các dƣợc phẩm), bệnh viện Thống Nhất TP.HCM,
bệnh viện phụ sản Từ Dũ TP.HCM (nghiên cứu lâm sàng các dạng thuốc...). Ngoài ra
một số nghiên cứu khác về ứng dụng của Spirulina trong chăn nuôi gia cầm và thuỷ sản,
tằm tơ cũng đƣợc triển khai tại trƣờng Đại học tổng hợp Hà Nội, Ủy ban khoa học kỹ
thuật nhà nƣớc và Sở nông nghiệp Hà Nội, Hà Bắc, Thái Bình, Lâm Đồng, TP.HCM...
8
Nhóm tác giả trên do cố giáo sƣ Nguyễn Hữu Thƣớc (Ủy ban khoa học kỹ thuật
nhà nƣớc) và các cộng sự Trần Văn Tựa, Phan Phƣơng Lan, Đặng Đình Kim (Viện sinh
vật) còn nghiên cứu sử dụng nguồn dinh dƣỡng khác để nuôi tảo nhƣ nƣớc thải ƣơm tơ
tằm tại Đan Hoài (Hà Tây), Bảo Lộc (Lâm Đồng), nƣớc suối khoáng Đắcmin (Buôn Ma
Thuột). Nhƣ vậy với đề tài cấp nhà nƣớc (Mã số 48.01.02.03) tổng kết tháng 4 năm
1986, đã đánh dấu bƣớc tiến bộ đƣa kết quả nghiên cứu từ phòng thí nghiệm ra ứng
dụng ở quy mô công nghiệp, hứa hẹn nhiều triển vọng của giống tảo quý này ở nƣớc ta.
Tại thành phố Hồ Chí Minh nhiều nghiên cứu về Spirulina cũng đƣợc tiến hành
tại :
+ Sở y tế TP.HCM, từ năm 1985 đã tiếp nhận giống tảo Spirulina đầu tiên do ông
bà R.D. Fox tặng thành phố, và giao cho Trạm nghiên cứu dƣợc liệu giữ giống, nghiên
cứu nuôi trồng. Các nghiên cứu sau đó đƣợc học tập, triển khai theo mô hình sử dụng
Biogas và bổ sung hoá chất. Hiện Trung tâm dinh dƣỡng trẻ em đang sản xuất ở diện
tích khoảng 170 m2 theo phƣơng pháp hoá chất.
+ Viện sinh học nhiệt đới TP.HCM (thuộc Trung tâm Khoa học tự nhiên và Công
nghệ quốc gia), từ năm 1989 đã triển khai nghiên cứu kỹ thuật với sự hỗ trợ của Cộng
hoà Pháp. Các nghiên cứu này ở mức độ phòng thí nghiệm, với các khảo cứu nuôi tảo
theo mô hình biogas từ Ấn Độ..., và nuôi bằng hoá chất, nhằm tìm một quy trình thích
hợp có thể ứng dụng vào thực tế. Đặc biệt các nghiên cứu còn tìm quy trình chiết xuất
một số hoạt chất sinh học từ Spirulina ứng dụng trong sinh hoá, y dƣợc... Có lẽ trong
tƣơng lai đề tài này sẽ đƣợc ứng dụng trong một dự án lớn về công nghệ sinh học của
Viện.
+ Cơ sở nuôi trồng và phát triển sản phẩm tảo Spirulina (tên giao dịch Labo.
HELVINAM), tại huyện Bình Chánh TP.HCM, đƣợc thành lập năm 1994. Dƣới sự
khuyến khích của Sở y tế Tp.HCM, Ủy ban nhân dân huyện Bình Chánh và sự nhiệt tình
của nhóm cán bộ nghiên cứu và một số nhà hảo tâm, cơ sở này bƣớc đầu đã thành công.
Quy trình liên hoàn nuôi trồng và sản xuất, sử dụng một số chế phẩm tảo Spirulina trong
dinh dƣỡng và làm thuốc phòng, chữa bệnh đƣợc thiết lập. Quy mô trong tƣơng lai có
9
thể là một trong những xí nghiệp chuyên sản xuất tảo lớn ở Việt Nam, với hồ nuôi tảo
kiểu nhà kính trên 2000 m2 hiện có và khả năng mở rộng.
Ngoài ra, còn nhiều nhóm nghiên cứu những vấn đề khác nhau của Spirulina ở
các trƣờng Đại học, các trung tâm nghiên cứu, các hộ gia đình,...trong nƣớc.
2.2.1 Phân loại
Spirulina tên gọi của vi sinh vật này do nhà tảo học ngƣời Đức Deurben đặt năm
1927, trên cơ sở hình thái đặc trƣng nhất là dạng sợi xoắn (spiralis).
Sau này các chuyên gia phân loại học thống nhất tên khoa học đầy đủ :
Ngành : Cyanophyta
Lớp : Oscillatoriales
Họ : Oscillatoriaceae
Chi : Spirulina
Loài : Spirulina platensis
Vì có cấu tạo và chức năng khác các loài thông thƣờng nên Spirulina còn có tên
là vi khuẩn lam hay phiêu sinh thực vật.
2.2.2 Phân bố
Trƣớc hết các vùng nƣớc kiềm (pH 8-11) có thể có Spirulina sống tự nhiên, nhất
là các hồ, suối khoáng, ấm áp. Về địa lý tảo này đƣợc tìm thấy ở phạm vi rất rộng :
Châu Phi (Tchad, Côngo, Ethiopia, Kenya, Nam Phi, Ai Cập, Tanzania, Zambia), Châu
Mỹ (Hoa kỳ, Peru, Uruguay, Mexico), Châu Á (Ấn Độ, Pakistan, Srilanka, Việt Nam),
Châu Âu (Nga, Ukraina, Hungarie,...). Từng vùng có thể có từng loài, giống Spirulina
khác nhau, hoặc một loài nhƣ S.platensis lại đƣợc tìm thấy ở nhiều nƣớc, có khi rất xa
nhau tới nửa vùng trái đất. Sự phân bố này có thể do chọn lọc tự nhiên, không kể do con
ngƣời chủ động di thực nuôi trồng. Cũng có thể đƣợc di thực theo một số loài chim di
trú, mà loài hồng lạc (Phoenicoraiasmiror), thƣờng ăn Spirulina ở Châu Mỹ là một số ví
dụ.
Tảo Spirulina thƣờng bám vào lông vũ và theo chim phân bố tới những nơi mà
hồng lạc cƣ trú theo mùa. Nhƣ vậy số lƣợng các giống, loài của Spirulina có hàng chục
10
ở nhiều vùng trên thế giới, tức là hệ gen hay tính đa dạng sinh học (biodiversity) của
chúng thật phong phú.(Lê Đình Lăng, 1999).
2.2.3. Hình thái và cấu tạo
Theo Frémy (1930) cơ thể hiển vi có dạng xoắn lò xo với 5-7 vòng xoắn đều
nhau. Trichom không phân nhánh, không có bao, không chia thành các tế bào có vách
ngăn ngang. Trong tế bào có những hạt nhỏ phân bố sát màng tế bào và ở những loài
trôi nổi trên bề mặt nƣớc thƣờng có không bào khí. Chiều dài của Trichom tời 151
micron (gần bằng 1,5 mm); chiều rộng 5,5 - 6,5 micron, đầu sợi hơi thun lại. Các vòng
xoắn đều nhau, đƣờng kính 43 micron, khoảng cách giữa các vòng xoắn 2,6 micron.
Chiều dài tế bào lớn hơn 2 micron và bằng một nửa chiều ngang. Chỗ vách ngăn ngang
giữa các tế bào hơi thắt lại. Sống trong các thuỷ vực nƣớc đứng, hiện nay S.platensis là
đối tƣợng nuôi trồng công nghệ vì sinh khối của chúng giàu chất dinh dƣỡng và protein
(trích dẫn bởi Dƣơng Tiến Đức, 1996).
Tảo lam phát triển thành sinh khối lớn ở hồ Ba mẫu (Hà Nội). (Dƣơng Tiến Đức,
1996).
2.2.4. Đặc điểm dinh dƣỡng của Spirulina platensis
Tảo Spirulina là vi sinh vật quang tự dƣỡng bắt buộc, không thể sống hoàn toàn
trong tối, quang hợp nhờ ánh sáng mặt trời và có khả năng cố định đạm rất cao. Đây là
một trong khoảng 2500 loài cyanophyta cổ nhất, tự dƣỡng đơn giản, có khả năng tổng
hợp các chất cần thiết cho cơ thể, kể cả các đại phân tử phức tạp.
Môi trƣờng dinh dƣỡng của Spirulina gồm :
Các dƣỡng chất : trong môi trƣờng nƣớc Spirulina cần đủ nguồn dinh dƣỡng
carbon, nitơ, các chất khoáng đa lƣợng và vi lƣợng...Ngoài ra chúng còn cảm ứng với
một số chất nhƣ là chất ức chế hoặc chất kích thích sinh trƣởng.
Các điều kiện lý hoá thích hợp : pH, áp suất thẩm thấu, ánh sáng, nhiệt độ,
điều kiện khuấy trộn, v.v...
Có rất nhiều đặc điểm dinh dƣỡng của tảo này, nhằm triển khai các quy trình
sản xuất sinh khối kinh tế nhất. Đó là các khảo cứu môi trƣờng tự nhiên của spirulina
sinh sống, đến pha chế các môi trƣờng nhân tạo, hoặc nửa nhân tạo bằng bổ sung các
11
chất vào nguồn tài nguyên thiên nhiên : nƣớc biển, nƣớc suối khoáng, nƣớc khoáng
ngầm, giếng khoan..., có thể tóm lƣợc nhƣ sau :
+ Dinh dƣỡng carbon :
Tảo Spirulina đồng hoá carbon chủ yếu ở dạng vô cơ, tốt nhất là
bicarbonat (HCO
-), thông qua quá trình quang hợp. Phản ứng quang tổng hợp
hidratcacbon (đƣờng) và một số chất khác :
HCO3
-
+ 2H2O (CH2O) +O2 + H2O + OH
-
Carbon dạng khí CO2 cũng có thể đƣợc sử dụng nhƣng phải đảm bảo cho
môi trƣờng ở vùng pH kiểm thích hợp. Do vậy nhiều tác giả đồng ý nguồn cacbon để
nuôi Spirulina ở khoảng 1,2 – 16,8g NaHCO3/lít. Ở môi trƣờng bicarbonat này, có thể
sục hoặc khuấy trộn không khí thƣờng (chứa 0,03% CO2), hoặc nguồn khí có 1-2%
CO2, nhằm để điều chỉnh pH, hoặc đảo môi trƣờng giúp tế bào trộn đều, tiếp xúc đƣợc
với ánh sáng. Tảo Spirulina tự dƣỡng thông qua quá trình quang hợp, dùng carbon vô cơ
nên thƣờng đƣợc nuôi trồng kiểu quang tự dƣỡng (Autotrophic culture). Các nghiên cứu
của Ogawa T., Terui G. (1972), và Crance J.M (1975) cho thấy Spirulina có thể sử dụng
glucose, muối acetat nhƣng phải sử dụng ánh sáng hay quang tự dƣỡng bắt buộc. Các
nguồn carbon hữu cơ này đƣợc đánh dấu (14C ) để nghiên cứu sự phân bố trong tế bào
và theo dõi sự phát triển. Các công trình nghiên cứu của Chen F, Zhang Y, Guo S.
(1996), cho thấy có thể nuôi Spirulina trong điều kiện quang tự dƣỡng (Phototrophic
culture), với nguồn carbonglucose-acetat. Nồng độ glucose 1,81 – 2,66g/l và acetat
0,246 –0,322g/l, với ánh sáng 2 – 4 Klux. Kiểu nuôi này cho sinh khối và hàm lƣợng
phycocyanin cao, năng suất sinh khối đạt 5g/l.
+ Dinh dƣỡng nitơ :
Tảo Spirulina và nhiều vi sinh vật cố định nitơ, đồng hoá nitơ theo phản
ứng khử nhờ enzyme nitrogenase xúc tác khi có ATP. Kết quả nitơ đƣợc tổng hợp thành
protein của chúng. Khả năng cố định đạm của Spirulina rất cao, cho hàm lƣợng nitơ
10% trọng lƣợng khô, hay thƣờng trên 50% protein. Nhƣng Spirulina không có khả
năng sử dụng nitơ dạng khí N2 mà sử dụng dƣới dạng nitrat (NO
3-), với ngƣỡng 30 –
70mg N/L, trung bình 4 – 12mg N/L (theo môi trƣờng Zarrouk C). Ngoài ra có thể dùng
12
nguồn nitơ khác : nitơ amoniac (NH3) dạng này thƣờng có trong các loại nƣớc thải
Biogas, nitơ amon : (NH4)2SO4 (Amonisulphat- AS), (NH4)2HPO4 (Diamoniphotphat-
DAP) là các loại phân bón hay dùng trong nông nghiệp, hoặc urê (NH2)2CO. Nếu sử
dụng các nguồn nitơ khác nitrat, cần khống chế nồng độ vì dễ gây sốc làm giảm năng
suất sinh khối, thậm chí có thể gây chết tảo.Theo kinh nghiệm nên khống chế nồng độ
nitơ tính theo NH3 từ 30-70 mg/L hoặc dƣới 100mg/L. Vậy nguồn thức ăn cho Spirulina
có thể chuyển đổi theo cách :
Urê (NH2CONH2) Amoniac (NH3) Amonium (NH4
+
) Nitrat (NO3
-
).
+ Các dƣỡng chất khoáng :
o Phôtpho vô cơ dƣới dạng muối natri, kaliphotphat hoà tan 90 –
180 mg/L.
o Kali K+ và Na+ : dƣới dạng muối cloride hoặc vài dạng kết hợp với
nguồn nitơ, photpho.
Tảo Spirulina rất ƣa muối, trong môi trƣờng ƣu trƣơng nhất chứa kali tới 5g/L và
natri tới 18g/L. Trong thực nghiệm một số ý kiến cho rằng tỷ lệ K+/Na+ nên nhỏ hơn 5,
lớn hơn tảo sẽ chậm phát triển, hoặc hơn nữa gây rối loạn tế bào, phá vỡ cất trúc tế bào
tảo.
o Magie (Mg+2) : đóng vai trò tƣơng tự nhƣ photpho, trong tổng hợp
các hạt polyphotphat.
o Canxi (Ca+2) : không gây ảnh hƣởng rõ đến sinh trƣởng của tảo.
o Sắt : là những dƣỡng chất thiết yếu, ảnh hƣởng trực tiếp tới sinh
trƣởng và hàm lƣợng của protein. Sắt thƣờng dùng ở dạng muối FeSO4 (0,01g/L). Có
thể dùng sắt dạng phức EDTA (Etylen diamin Tetracetic acid), phức này hoà tan bền
hơn trong kiềm so với dạng vô cơ. Nồng độ Fe2+ trong môi trƣờng rất rộng từ 0,56 –
56mg/L môi trƣờng.
o Clo (Cl-) tảo này rất ƣa clo vô cơ, nồng độ dùng với muối NaCl,
khoảng 1 –1,5g/L.
13
o Các khoáng vi lƣợng khác : Bo (B3+), kẽm (Zn2+), Mangan (Mn2+),
đồng (Cu2+), Coban (Co2+) ...là các vi lƣợng đƣợc dùng, nhƣng ảnh hƣởng không rõ đến
sinh khối protein, nhƣng lại có ảnh hƣởng tới một số thành phần khác nhƣ vitami