Cisco phát hành ấn bản đầu tiên về chuyển mạch nhãn đa giao thức (MPLS) vào tháng 3 năm 1998 và trong vài tháng gần đây công nghệ này được chuẩn hoá tại Lực lượng đặc nhiệm kỹ sư Internet (IETF). Một vài đặc tính MPLS mới trở nên có giá trị trong năm nay sẽ cung cấp những khả năng mới cho các mạng cung cấp dịch vụ.
Sự phát triển nhanh chóng của Internet và sự triển khai trên diện rộng các mạng được xây dựng trên tập giao thức Internet đang tạo ra những nhu cầu cho các khả năng mới trong mạng IP. MPLS cung cấp một số các khả năng như vậy. Trong khi báo chí thương mại thường tập trung vào MPLS như một công nghệ nâng cao chất lượng, chúng ta sẽ xem xét các lợi ích của MPLS theo khía cạnh tăng cường chức năng. Các khả năng cơ bản mà MPLS cung cấp cho việc phân phối các dịch vụ thương mại IP bao gồm:
Hỗ trợ VPN
Định tuyến thẳng (cũng được biết đến như là định tuyến có điều tiết hay điều khiển lưu lượng)
Hỗ trợ cục bộ cho định tuyến IP trong các tổng đài chuyển mạch ATM.
Sự phát triển nhanh chóng của IP và sự tăng trưởng của Internet trở thành một sự thật không thể không thừa nhận. Địa vị thống trị của IP tại giao thức lớp 3 cũng là điều không cần bàn cãi. Trong một thời gian dường như mọi thứ đều dựa trên IP và IP ở trên tất cả mọi thứ. Trên thực tế, xu hướng phát triển chứng minh cho điều đó. Lưu lượng lớn nhất trong các mạng xương sống thực tế đều bắt nguồn từ IP. Hầu hết các dịch vụ khác nhau từ các công nghệ lớp dưới đều hỗ trợ cho các dịch vụ IP. Trong tất cả các công việc tiêu chuẩn hoá công nghệ, hỗ trợ cho IP trở thành tiêu chí cho việc nghiên cứu.
Với các nhà thiết kế mạng, sự phát triển nhanh chóng của Internet có thể không tránh khỏi. Việc mở rộng đều đặn của mạng, sự tăng trưởng không ngừng của lưu lượng, và sự phức tạp của các dịch vụ đã biến mạng hiện tại thành không thể chấp nhận đươc. Nhu cầu thị trường cấp bách cho một mạng tốc độ cao, giá thành thấp là tác nhân chủ yếu cho sự ra đời của một loạt các công nghệ mới bao gồm MPLS.
Hiện nay, có rất nhiều công nghệ để xây dựng mạng IP, như IPOA (IP qua ATM), IPOS (IP qua SDH/SONET), IP qua WDM và IP qua cáp quang. Mỗi công nghệ có ưu điểm và nhược điểm nhất định. Công nghệ ATM được sử dụng rộng rãi trên toàn cầu trong các mạng IP xương sống do tốc độ cao, chất lượng dịch vụ QoS, điều khiển luồng và các đặc tính khác của nó mà các mạng định tuyến truyền thống không có. Nó cũng được phát triển để hỗ trợ cho IP. Hơn nữa, trong các trường hợp đòi hỏi thời gian thực cao, IPOA sẽ là sự lựa chọn số một, do đó nghiên cứu về IPOA quan trọng hơn. MPLS thực sự là sự cải tiến của công nghệ IPOA truyền thống.
IPOA truyền thống là một công nghệ lai ghép. Nó đặt IP (công nghệ lớp thứ 3) trên ATM (công nghệ lớp thứ 2). Các giao thức của hai lớp là hoàn toàn độc lập. Chúng được kết nối với nhau bằng một loạt các giao thức (như NHRP, ARP, v.v.). Cách tiếp cận này hình thành tự nhiên và nó được sử dụng rộng rãi. Khi xuất hiện sự bùng nổ lưu lượng mạng, phương thức này dẫn đến một loạt các vấn đề cần giải quyết.
70 trang |
Chia sẻ: oanhnt | Lượt xem: 1778 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Đề tài Nghiên cứu công nghệ chuyển mạch nhãn mpls và đề xuất các kiến nghị áp dụng công nghệ mpls trong mạng thế hệ mới ngn của tổng công ty, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
TỔNG CÔNG TY BƯU CHÍNH VIỄN THÔNG VIỆT NAM
HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG
VIỆN KHOA HỌC KỸ THUẬT BƯU ĐIỆN
BÁO CÁO ĐỀ TÀI:
NGHIÊN CỨU CÔNG NGHỆ CHUYỂN MẠCH NHÃN MPLS VÀ ĐỀ XUẤT CÁC KIẾN NGHỊ ÁP DỤNG CÔNG NGHỆ MPLS TRONG MẠNG THẾ HỆ MỚI NGN CỦA TỔNG CÔNG TY
Mã số:
Chủ trì đề tài: Đỗ Mạnh Quyết
Cộng tác viên: Lê Ngọc Giao
Trần Hạo Bửu
Phạm Thuỷ Phong (VTN)
Trần Việt Tuấn (Ban KHCN&CN)
Phan Huy Tú
Nguyễn Ngọc Thành
Đặng Thu Hà
Phan Hà Trung
Hà nội 12/1999
MỤC LỤC
LỜI GIỚI THIỆU
TỪ VIẾT TẮT
Cơ sở công nghệ MPLS
Lịch sử phát triển MPLS
Cisco phát hành ấn bản đầu tiên về chuyển mạch nhãn đa giao thức (MPLS) vào tháng 3 năm 1998 và trong vài tháng gần đây công nghệ này được chuẩn hoá tại Lực lượng đặc nhiệm kỹ sư Internet (IETF). Một vài đặc tính MPLS mới trở nên có giá trị trong năm nay sẽ cung cấp những khả năng mới cho các mạng cung cấp dịch vụ.
Sự phát triển nhanh chóng của Internet và sự triển khai trên diện rộng các mạng được xây dựng trên tập giao thức Internet đang tạo ra những nhu cầu cho các khả năng mới trong mạng IP. MPLS cung cấp một số các khả năng như vậy. Trong khi báo chí thương mại thường tập trung vào MPLS như một công nghệ nâng cao chất lượng, chúng ta sẽ xem xét các lợi ích của MPLS theo khía cạnh tăng cường chức năng. Các khả năng cơ bản mà MPLS cung cấp cho việc phân phối các dịch vụ thương mại IP bao gồm:
Hỗ trợ VPN
Định tuyến thẳng (cũng được biết đến như là định tuyến có điều tiết hay điều khiển lưu lượng)
Hỗ trợ cục bộ cho định tuyến IP trong các tổng đài chuyển mạch ATM.
Sự phát triển nhanh chóng của IP và sự tăng trưởng của Internet trở thành một sự thật không thể không thừa nhận. Địa vị thống trị của IP tại giao thức lớp 3 cũng là điều không cần bàn cãi. Trong một thời gian dường như mọi thứ đều dựa trên IP và IP ở trên tất cả mọi thứ. Trên thực tế, xu hướng phát triển chứng minh cho điều đó. Lưu lượng lớn nhất trong các mạng xương sống thực tế đều bắt nguồn từ IP. Hầu hết các dịch vụ khác nhau từ các công nghệ lớp dưới đều hỗ trợ cho các dịch vụ IP. Trong tất cả các công việc tiêu chuẩn hoá công nghệ, hỗ trợ cho IP trở thành tiêu chí cho việc nghiên cứu.
Với các nhà thiết kế mạng, sự phát triển nhanh chóng của Internet có thể không tránh khỏi. Việc mở rộng đều đặn của mạng, sự tăng trưởng không ngừng của lưu lượng, và sự phức tạp của các dịch vụ đã biến mạng hiện tại thành không thể chấp nhận đươc. Nhu cầu thị trường cấp bách cho một mạng tốc độ cao, giá thành thấp là tác nhân chủ yếu cho sự ra đời của một loạt các công nghệ mới bao gồm MPLS.
Hiện nay, có rất nhiều công nghệ để xây dựng mạng IP, như IPOA (IP qua ATM), IPOS (IP qua SDH/SONET), IP qua WDM và IP qua cáp quang. Mỗi công nghệ có ưu điểm và nhược điểm nhất định. Công nghệ ATM được sử dụng rộng rãi trên toàn cầu trong các mạng IP xương sống do tốc độ cao, chất lượng dịch vụ QoS, điều khiển luồng và các đặc tính khác của nó mà các mạng định tuyến truyền thống không có. Nó cũng được phát triển để hỗ trợ cho IP. Hơn nữa, trong các trường hợp đòi hỏi thời gian thực cao, IPOA sẽ là sự lựa chọn số một, do đó nghiên cứu về IPOA quan trọng hơn. MPLS thực sự là sự cải tiến của công nghệ IPOA truyền thống.
IPOA truyền thống là một công nghệ lai ghép. Nó đặt IP (công nghệ lớp thứ 3) trên ATM (công nghệ lớp thứ 2). Các giao thức của hai lớp là hoàn toàn độc lập. Chúng được kết nối với nhau bằng một loạt các giao thức (như NHRP, ARP, v.v..). Cách tiếp cận này hình thành tự nhiên và nó được sử dụng rộng rãi. Khi xuất hiện sự bùng nổ lưu lượng mạng, phương thức này dẫn đến một loạt các vấn đề cần giải quyết.
1. Thứ nhất, trong phương thức lai ghép, cần phải thiết lập các kết nối PVC cho tất cả các nút nghĩa là để thiết lập mạng với tất cả các kết nối như được biểu diễn trong Hình I1. Điều này sẽ tạo ra hình vuông N. Khi thiết lập, duy trì và ngắt kết nối giữa các nút, các mào đầu liên quan (như số kênh ảo, số lượng thông tin điều khiển) sẽ chỉ thị về độ lớn của hình vuông N của số các nút. Khi mạng mở rộng, mào đầu sẽ ngày càng lớn và tới mức không thể chấp nhận được.
2. Phương thức lai ghép phân chia toàn bộ mạng IPOA thành rất nhiều các LIS (Mạng con IP Logic), thậm chí với các LIS trong cùng một mạng vật lý. Các LIS được kết nối nhờ các bộ định tuyến trung gian được biểu diễn trong Hình I2. Cấu hình multicast giữa các LIS khác nhau trên một mặt và giữa các bộ định tuyến này sẽ sẽ trở nên hạn chế khi luồng lưu lượng lớn. Cấu hình như vậy chỉ áp dụng cho các mạng nhỏ như mạng doanh nghiệp, mạng trường sở, v.v.. và không phù hợp với nhu cầu cho các mạng xương xống Internet trong tương lai. Cả hai đều khó mở rộng.
3. Trong phương thức lai ghép, IPOA sẽ không thể đảm bảo về chất lượng dịch vụ QoS.
Hình I1 Sự mở rộng mạng IPOA.
Hình I2 Nút cổ chai trong mạng IPOA.
4. Không phải tất cả mọi cân nhắc được đưa ra cho mỗi bên trong thiết kế IP và ATM. Điều này tạo nên sự liên kết giữa chúng phụ thuộc vào một loạt các giao thức phức tạp và các bộ định tuyến xử lý các giao thức này. Sự phức tạp sẽ gây ra các hiệu ứng có hại đến độ tin cậy của các mạng xương sống.
Các công nghệ như MPOA, và LANE đang được hình thành để giải quết các tồn tại này. Tuy nhiên các giải pháp đó không thể giải quyết được tất cả các tồn tại. Trong khi ấy, nổi bật lên trên một loạt các công nghệ IPOA khác với phương thức lai ghép là chuyển mạch nhãn theo phương thức tích hợp. Chúng cung cấp giải pháp hợp lý để giải quyết những tồn tại này.
Chuyển mạch nhãn được hiểu là khải niệm chung cho tất cả các công nghệ chuyển mạch nhãn hiện có. Những công nghệ này thực sự dựa trên những cơ sở mà MPLS đã được hình thành.
Khái niệm chuyển mạch nhãn xuất phát từ quá trình nghiên cứu hai thiết bị cơ bản trong mạng IP: tổng đài chuyển mạch và bộ định tuyến. Chúng ta có thể thấy rằng chỉ xét trong các yếu tố tốc độ chuyển mạch, phương thức điều khiển luồng, tỉ lệ giữa giá cả và chất lượng thì tổng đài chuyển mạch chắc chắn tốt hơn nhiều so với bộ định tuyến. Tuy nhiên, các bộ định tuyến có các chức năng định tuyến mềm dẻo mà tổng đài không thể so sánh được. Do đó chúng ta không thể không nghĩ rằng chúng ta có thể có một thiết bị có khả năng điều khiển luồng, tốc độ cao của tổng đài cũng như các chức năng định tuyến mềm dẻo của bộ định tuyến. Đó là động cơ then chốt để phát triển chuyển mạch nhãn.
Nguyên tắc cơ bản của chuyển mạch nhãn là sử dụng một thiết bị tương tự như bộ định tuyến để điều khiển thiết bị chuyển mạch phần cứng ATM, do vậy công nghệ này có được tỉ lệ giữa giá thành và chất lượng có thể sánh được với tổng đài. Nó cũng có thể hỗ trợ thậm chí rất nhiều chức năng định tuyến mới mạnh hơn như định tuyến hiện v.v.. Công nghệ này do đó kết hợp một cách hoàn hảo ưu điểm của các tổng đài chuyển mạch với ưu điểm của các bộ định tuyến, và trở thành điểm nóng thu hút sự tập trung của ngành công nghiệp.
Quá trình tiêu chuẩn hoá MPLS
MPLS phát triển cùng với sự phát triển của hàng loạt các công nghệ:
IP over ATM
Mặc dù các ứng dụng MPLS hoàn toàn không giới hạn với IPOA, sự cải tiến IPOA đầu tiên sinh ra MPLS. Công việc tiêu chuẩn hoá ATM bắt đầu rất sớm vào khoảng năm 1980, và ngay sau đó phạm vi ứng dụng của IP dẫn tới việc nghiên cứu xem thi hành IP trên ATM như thế nào. Một vài nhóm làm việc IETF đã giải quyết câu hỏi này, và đưa đến kết quả trong hai tài liệu RFC là RFC 1483 và RFC 1577 vào năm 1993 và 1994.
RFC1483 mô tả cách đóng gói bản tin IP trong các tế bào ATM trong khi RFC1577 định nghĩa CIPOA và ATMARP (ATM Address Resolution Protocol).
CIPOA thiết kế ATM bằng công nghệ mạng con IP logic, máy chủ và các bộ định tuyến IP đặt trong các LIS khác nhau tương ứng. Khi cả hai phần liên lạc đều nằm trong cùng một LIS giống nhau, chúng có thể liên lạc trực tiếp. Nếu không chúng không thể liên lạc trực tiếp với nhau và một hoặc một vài bộ định tuyến trung gian cần thiết sẽ được sử dụng.
Vì những nhược điểm của CIPOA được đề cập ở trên, trong khi nó lại được sử dụng rất rộng rãi, các nhà nghiên cứu đang làm việc để tìm kiếm một công nghệ IPOA hiệu quả hơn.
Toshiba's CSR
Toshiba đầu tiên định nghĩa mô hình chuyển mạch nhãn, công nghệ CSR (Cell Switching Router). Mô hình này đầu tiên đề xuất ý kiến đặt cấu trúc chuyển mạch ATM dưới sự điều khiển của giao thức IP (như giao thức định tuyến IP và giao thức RSVP) mà không phải là giao thức ATM (Q.2931). Bởi vậy mô hình này có thể loại trừ toàn bộ cuộc gọi báo hiệu ATM và việc xắp xếp địa chỉ phức tạp. Và CSR đòi hỏi mạng CSR có thể chứa những tổng đài chuyển mạch ATM và các tổng đài chuyển mạch CSR tại cùng một thời điểm. CSR có thể thay thế các bộ định tuyến giữa một LIS trong CIPOA, do đó giải phóng nhu cầu cho NHRP.
CSR xem như là công nghệ chuyển mạch nhãn đầu tiên được đệ trình tại cuộc họp IETF BOF vào cuối năm 1994 và đầu năm 1995. Tuy nhiên, không có những nghiên cứu chuyên sâu vào mô hình này. Định nghĩa của công nghệ này không rõ ràng và hoàn chỉnh. Và các sản phẩm vật lý chưa có.
Cisco's Tag Switching
Chỉ một vài tháng sau khi Ipsion thông báo về công nghệ chuyển mạch IP, Cisco đã phổ biến công nghệ chuyển mạch thẻ của mình. Mô hình này khác rất nhiều so với hai công nghệ ở trên. Ví dụ, nó không sử dụng điều khiển luồng nhưng sử dụng phương thức control drive trong thiết lập bảng truyền lại, và nó không giới hạn với các ứng dụng trong hệ thống chuyển mạch ATM. Công nghệ này đã có các tài liệu RFC. Không giống như Ipsilon, Cisco dành hết cho tiêu chẩn quốc tế của công nghệ này. Các tài liệu RFC được xuất bản cho tất cả các khía cạnh của các công nghệ, và các nỗ lực của Cisco đã mang lại kết quả trong việc thiết lập nên nhóm làm việc MPLS IETF.
IBM's ARIS and Nortel's VNS
Ngay sau khi Cisco thông báo về công nghệ của mình, IBM bắt kịp với ARIS (aggregate Route-based IP Switching) của mình và các tài liệu RFC cũng được hình thành. Mặc dầu ARIS khá giống với chuyển mạch thẻ, chúng cũng có rất nhiều các điểm khác biệt. Các công ty lớn khác trong công nghiệp, như Nortel, cũng sử dụng chúng trong các sản phẩm VNS chuyển mạch nhãn của mình. Có thể thấy rằng nghiên cứu về chuyển mạch nhãn đã nhận được sự chú ý rộng rãi trong công nghiệp.
Công việc chuẩn hoá MPLS
Với sự hỗ trợ từ nhiều công ty, IETF triệu tập cuộc họp BOF trong năm 1996. Đây là một trong những cuộc họp thành công nhất trong lịch sử IETF. MPLS đi vào con đường chuẩn hoá một cách hợp lý, mặc dầu nó còn được cân nhắc xem liệu có những bộ định tuyến đủ nhanh hay công nghệ này liệu có còn cần thiết. Trong thực tế, không có một bộ định tuyến nào đạt được và các công nghệ chuyển mạch nhãn hiện có cần phải chuẩn hoá.
Vào đầu năm 1997, hiến chương MPLS được thông qua.
Vào tháng 4 năm 1997 nhóm làm việc MPLS tiến hành cuộc họp đầu tiên.
Vào tháng 11 năm 1997, tài liệu MPLS được ban hành.
Vào tháng 7 năm 1998, tài liệu cấu trúc MPLS được ban hành.
Trong tháng 8 và tháng 9 năm 1998, 10 tài liệu internet bổ xung được ban hành, bao gồm MPLS LDP (Label Distribution Protocol), Mark Encoding, các ứng dụng ATM, v.v... MPLS hình thành về căn bản.
IELF hy vọng sẽ kết thúc các tiêu chuẩn MPLS và đưa ra các tài liệu RFC trong năm 1999.
Chúng ta có thể thấy rằng MPLS đã phát triển rất nhanh chóng và hiệu quả. Điều này cũng chứng minh những yêu cầu cấp bách trong công nghiệp cho một công nghệ mới.
Hầu hết các tiêu chuẩn MPLS hiện tại đang còn ở dạng “Internet Draft”, mặc dù có một vài tiêu chuẩn MPLS đã được đưa vào dạng RFC-STD.
Không có một tiêu chuẩn MPLS độc lập mà chỉ có một tập các RFC, khi toàn bộ các RFC được hoàn thiện chúng sẽ được tập hợp với nhau cho phép xây dựng một hệ thống MPLS. Ví dụ như hiện này có khoảng hơn RFC về chỉ tiêu kỹ thuật cho bộ định tuyến IP mà các bộ định tuyến này phải tuân theo.
Nhóm làm việc MPLS trong IETF
Nhóm làm việc MPLS là một tập các nhóm làm việc bao gồm các phạm vi ‘sub-IP’ mà IESG thành lập gần đây. Tất cả các nhóm làm việc sub-IP tạm thời đang được đặt trong General Area cho đến khi IESG quyết định cấu trúc quản lý cuối cùng cho việc quản lý các nhóm này.
Nhóm làm việc MPLS chịu trách nhiệm chuẩn hoá các công nghệ cơ sở cho sử dụng chuyển mạch nhãn và cho việc thi hành các đường chuyển mạch nhãn trên các loại công nghệ lớp liên kết, như Frame Relay, ATM và các công nghệ LAN (Ethernet, Token Ring, v.v..). Nó bao gồm các thủ tục và các giao thức cho việc phân phối nhãn giữa các bộ định tuyến, xem xét về encapsulation và multicast.
Các mục tiêu khởi đầu của nhóm làm việc đã gần như hoàn thành. Cụ thể, nó đã xây dựng một số các RFC (xem liệt kê phía dưới) định nghĩa Giao thức phân phối nhãn cơ sở (LDP), kiến trúc MPLS cơ sở và tóm lược, các định nghĩa cho việc chạy MPLS qua các đường liên kết ATM, Frame Relay.
Các mục tiêu gần đây của nhóm làm việc là:
1. Hoàn thành các chỉ mục còn tồn tại:
2. PHát triển các tiêu chuẩn đề nghị của nhóm làm việc MPLS thành các bản Dratf Standard. Bao gồm: LDP, CR-LDP, và các tiêu chuẩn kỹ thuật RSVP-TE cũng như encapsulation.
3. Định rõ các mở rộng phù hợp với LDP và RSVP cho việc xác nhận LSP nguồn.
4. Hoàn thành các công việc trên MPLS-TE MIB
5. Xác định các cơ chế chấp nhận lỗi cải tiến cho LDP.
6. Xác định các cơ chế phụ phồi MPLS cho phép một đường chuyển mạch nhãn có thể được sử dụng như là một bản dự trữ cho một tập các đường chuyển mạch nhãn khác bao gồm các trường hợp cho phép sửa chữa cục bộ.
7. Cung cấp tài liệu về các tóm lược MPLS mở rộng cho phép hoạt động trên các đường chuyển mạch nhãn trên các công nghệ lớp thấp hơn, như phân chia theo thời gian (SONET ADM), độ dài bước sóng và chuyển mạch không gian.
8. Hoàn tất các công việc đang tiến hành cho việc xác định cơ cấu với IP Multicast qua các đưòng chuyển mạch nhãn.
Internet-Drafts:
STT
Tên Draft
Carrying Label Information in BGP-4
Definitions of Managed Objects for the Multiprotocol Label Switching, Label Distribution Protocol (LDP)
LDP State Machine
RSVP-TE: Extensions to RSVP for LSP Tunnels
Constraint-Based LSP Setup using LDP
MPLS Traffic Engineering Management Information Base Using SMIv2
MPLS Support of Differentiated Services
Framework for IP Multicast in MPLS
MPLS Label Switch Router Management Information Base Using SMIv2
ICMP Extensions for MultiProtocol Label Switching
Applicability Statement for CR-LDP
Applicability Statement for Extensions to RSVP for LSP-Tunnels
LSP Modification Using CR-LDP
LSP Hierarchy with MPLS TE
Link Management Protocol (LMP)
Framework for MPLS-based Recovery
Multiprotocol Label Switching (MPLS) FEC-To-NHLFE (FTN) Management Information Base Using SMIv2
Fault Tolerance for LDP and CR-LDP
Generalized MPLS - Signaling Functional Description
MPLS LDP Query Message Description
Signalling Unnumbered Links in CR-LDP
LDP Extensions for Optical User Network Interface (O-UNI) Signaling
Signalling Unnumbered Links in RSVP-TE
Requirements for support of Diff-Serv-aware MPLS Traffic Engineering
Extensions to RSVP-TE and CR-LDP for support of Diff-Serv-aware MPLS Traffic Engineering
Generalized MPLS Signaling - CR-LDP Extensions
Generalized MPLS Signaling - RSVP-TE Extensions
Các khía cạnh kỹ thuật MPLS
Khái niệm MPLS
Khái quát MPLS
Khi một gói tin tuân theo các phương thức lớp mạng connectionless từ một bộ định tuyến đến bộ định tuyến tiếp theo, mỗi bộ định tuyến phải đưa ra một quyết định gửi chuyển tiếp độc lập cho gói tin đó. Do đó, mỗi bộ định tuyến phân tích mào đầu gói tin và mỗi bộ định tuyến sẽ chạy các thuật toán định tuyến lớp mạng. Mỗi bộ định tuyến lựa chọn hop tiếp theo cho gói tin một cách hoàn toàn độc lập dựa trên những phân tích của nó về mào đầu gói tin và kết quả của việc chạy thuật toán định tuyến.
Các mào đầu gói tin chứa đựng nhiều thông tin hơn là thông tin cần thiết để lựa chọn hop tiếp theo. Lựa chọn hop tiếp theo bởi vậy có thể xem là sự cấu thành của hai chức năng. Chức năng thứ nhất phân chia toàn bộ các gói tin vào các tập lớp gửi chuyển tiếp ngang cấp FEC (Forwarding Equivalence Class). Chức năng thứ hai là xắp xếp mỗi FEC cho một hop tiếp theo. Khi quyết định gửi chuyển tiếp được đưa ra, với các gói tin được xắp xếp vào cùng một FEC là giống nhau. Tất cả các gói tin trong cùng một FEC cụ thể và xuất phát từ một nút cụ thể sẽ đi theo cùng một tuyến đường hoặc theo một tập các tuyến đường liên kết với FEC đó.
Trong gửi chuyển tiếp IP truyền thống, một bộ định tuyến cụ thể sẽ đưa hai gói tin vào cùng một FEC nếu như một vài tiền tố địa chỉ X trong các bảng định tuyến của bộ định tuyến phù hợp với các địa chỉ đích của gói tin. Khi gói tin truyền qua mạng, mỗi hop lần lượt kiểm tra lại gói tin và ấn định nó vào một FEC.
Trong MPLS, việc ấn định một gói tin cụ thể vào một FEC được thực hiện một lần khi gói tin đi vào mạng. FEC mà gói tin được ấn định được mã hoá thành một giá trị có độ dài cố định được gọi là nhãn. Khi một gói tin được gửi chuyển tiếp tới hop tiếp theo của nó, nhãn được gửi theo gói tin, như vậy các gói tin được dán nhãn trước khi chúng được gửi chuyển tiếp.
Tại các hop phía sau, không có những phân tích sâu hơn về mào đầu lớp mạng. Đúng hơn là nhãn được sử dụng như chỉ số trong bảng mà nó xác định hop tiếp theo và nhãn mới. Nhãn cũ được thay thế bằng một nhãn mới và gói tin được gửi chuyển tiếp đến hop tiếp theo.
Trong mô hình gửi chuyển tiếp MPLS, một khi một gói tin được ấn định vào một FEC thì không có bất cứ một phân tích mào đầu nào được các bộ định tuyến phía sau thực hiện. Tất cả công việc gửi chuyển tiếp được điều khiển bằng các nhãn. Điều này có một số các ưu điểm so với việc gửi chuyển tiếp lớp mạng truyền thống.
- Việc gửi chuyển tiếp có thể được thực hiện bằng các tổng đài có khả năng tìm kiếm và thay thế nhãn, nhưng không có khả năng phân tích mào đầu lớp mạng hoặc không có khả năng phân tích mào đầu lớp mạng tại một tốc độ xác định.
- Kể từ lúc gói tin được ấn định vào một FEC khi nó đi vào mạng, bộ định tuyến đầu vào có thể sử dụng bất cứ thông tin nào mà nó có về gói tin cho dù là các thông tin đó không thể lấy được từ mào đầu lớp mạng trong khi quyết định việc ấn định. Ví dụ, các gói tin tới các cổng khác nhau có thể được ấn định cho các FEC khác nhau. Trong khi đó việc gửi chuyển tiếp truyền thống có thể chỉ xem xét đến thông tin được mang theo cùng với gói tin trong mào đầu gói tin.
- Một gói tin đi vào mạng tại một bộ định tuyến cụ thể có thể được dán nhãn khác với một gói tin tương tự nhưng đi vào mạng tại một bộ định tuyến khác, kết quả là các quyết định gửi chuyển tiếp phụ thuộc vào bộ định tuyến lối vào. Điều này không thể thực hiện được trong việc gửi chuyển tiếp truyền thống, khi mà bộ định tuyến lối vào của gói tin không được mang theo gói tin.
- Những yếu tố quyết định xem liệu gói tin được ấn định cho một FEC như thế nào có thể trở nên ngày càng phức tạp, nếu không có bất cứ một tác động nào vào các bộ định tuyến chỉ đơn thuần là gửi chuyển tiếp các gói tin dán nhãn.
- Đôi khi chúng ta muốn bắt gói tin đi theo một tuyến đường xác định mà đã được lựa chọn trước hoặc tại thời điểm gói tin đi vào mạng, hơn là tuyến đường được lựa chọn bằng các thuật toán định tuyến động khi gói tin đi qua mạng. Điều này có thể được thực hiện như là vấn đề về chính sách hoặc để hỗ trợ điều khiển lưu lượng. Trong gửi chuyển tiếp truyền thống, điều này đòi hỏi gói tin phải mang bộ mã về tuyến đường của nó đi theo. Trong MPLS, một nhãn có thể được sử dụng để đại diện cho một tuyến đường vì thế nhận dạng của tuyến đường không cần phải mang theo trong gói tin.
Một vài bộ định tuyến phân tích mào đầu lớp mạng của gói tin không phải đơn thuẩn chỉ để lựa chọn hop tiếp theo mà còn để quyết định quyền ưu tiên và COS của gói tin. Sau đó chúng có thể áp dụng các ngưỡng loại bỏ hoặc các lịch trình khác nhau cho các gói tin khác nhau. MPLS cho phép (nhưng không yêu cầu) quyền ưu tiên hoặc CoS có thể được xác định hoàn toàn hoặc một phần từ nhãn. Trong trường hợp này, có thể nó rằng nhãn đại diện cho sự kết hợp của FEC và quyền ưu tiên hoặc CoS.
MPLS là Chuyển mạch nhãn đa giao thức, đa giao thức ở đây có nghĩa là các công nghệ của nó có thể áp dụng trong bất cứ giao thức lớp mạng nào. Trong đề tài này chúng tôi chủ yếu