Ngày nay, xử lý tín hiệu và lọc số là một ngành phát triển hết sức mạnh mẽ, các công nghệ, thuật toán ngày càng được đổi mới và tối ưu hoá nhằm nâng cao tính hiệu quả của nó. Tuy nhiên, công nghệ phát triển càng cao thì đòi hỏi phần cứng phải đủ nhanh để xử lý. Các mạch lọc tương tự trước đây không còn đủ khả năng để đáp ứng yêu cầu đó nữa. Vì vậy, FPGA đã ra đời như một giải pháp cung cấp môi trường làm việc hiệu quả cho các ứng dụng thực tế. Tính linh động cao trong quá trình thiết kế cho phép FPGA giải quyết những bài toán phức tạp mà trước kia chỉ thực hiện nhờ phần mềm máy tính. Ngoài ra, nhờ mật độ cổng logic cao, FPGA được ứng dụng cho những bài toán đòi hỏi khối lượng tính toán lớn và dùng trong các hệ thống làm việc theo thời gian thực. Những ứng dụng trong thực tế của FPGA rất rộng rãi, bao gồm: các hệ thống hàng không, vũ trụ, quốc phòng, tiền thiết kế mẫu ASIC(ASIC prototyping), các hệ thống điều khiển trực quan, phân tích nhận dạng ảnh, nhận dạng tiếng nói, mật mã học, mô hình phần cứng máy tính.Đặc biệt, với khả năng tái lập trình, người sử dụng có thể thay đổi lại thiết kế của mình chỉ trong vài giờ.
Chính vì tính thiết thực mà FPGA đã mang lại, em quyết định chọn FPGA làm hướng nghiên cứu của mình. Trong bài khoá luận này, em xin trình bày một ứng dụng cụ thể của FPGA trong xử lý tín hiệu số đó là “Thực hiện bộ lọc FIR thích nghi dùng thuật toán LMS”. Đề tài được thực hiện tại phòng thí nghiệm mục tiêu “Các hệ tích hợp thông minh ( SIS LAB)” trực thuộc trường Đại học Công nghệ - ĐHQG HN.
Em xin chân thành cảm ơn các thầy cô giáo đặc biệt là PGS.TS Trần Quang Vinh và Th.S Nguyễn Kiêm Hùng đã tận tình hướng dẫn và giúp đỡ em để hoàn thành bản luận văn này một cách tốt đẹp.
Do thời gian và kiến thức có hạn nên công trình này không thể tránh khỏi sai sót, vì vậy em rất mong nhận được các ý kiến đóng góp của các thầy cô và các bạn.
Em xin chân thành cảm ơn !
65 trang |
Chia sẻ: oanhnt | Lượt xem: 1558 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Đề tài Thực hiện bộ lọc FIR thích nghi dùng thuật toán LMS, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
MỤC LỤC
BẢNG KÝ HIỆU VIẾT TẮT
Ký Hiệu
Diễn Giải
ASIC
Application Specific Integrated Circuit
ADC
Analog to Digital Converter
ALU
Arithmetic Logic Unit
ASM
Auto Senquencing Memory
CPLD
Complex Programmable Logic Device
CPU
Central Processing Unit
DSP
Digital Signal Processing
DAC
Digital to Analog Converter
DPU
Data Processing Unit
FIR
Finite Impulse Response
FPGA
Field Programmable Gate Array
HDL
Hardware Description Language
IC
Integrated Circuit
IEEE
Institute of Electrical and Electronics Engineers
JTAG
Joint Test Action Group
LED
Light Emitting Diode
LUT
Look Up Table
LMS
Least Mean Square
PAL
Programmable Array Logic
PLA
Programmable Logic Array
PCI
Peripheral Component Interconnect
PE
Process Element
RAM
Random Access Memory
ROM
Read Only Memory
RS232
Recommended Standard 232
SoC
System on chip
SRAM
Static Random Access Memory
SPLD
Simple Programable Logic Device
USB
Universal Serial Bus
VHDL
Very High Speed Itergrated Circuit
Hardware Description Language
VHSIC
Very High Speed Itergrated Circuit
LỜI MỞ ĐẦU
Ngày nay, xử lý tín hiệu và lọc số là một ngành phát triển hết sức mạnh mẽ, các công nghệ, thuật toán ngày càng được đổi mới và tối ưu hoá nhằm nâng cao tính hiệu quả của nó. Tuy nhiên, công nghệ phát triển càng cao thì đòi hỏi phần cứng phải đủ nhanh để xử lý. Các mạch lọc tương tự trước đây không còn đủ khả năng để đáp ứng yêu cầu đó nữa. Vì vậy, FPGA đã ra đời như một giải pháp cung cấp môi trường làm việc hiệu quả cho các ứng dụng thực tế. Tính linh động cao trong quá trình thiết kế cho phép FPGA giải quyết những bài toán phức tạp mà trước kia chỉ thực hiện nhờ phần mềm máy tính. Ngoài ra, nhờ mật độ cổng logic cao, FPGA được ứng dụng cho những bài toán đòi hỏi khối lượng tính toán lớn và dùng trong các hệ thống làm việc theo thời gian thực. Những ứng dụng trong thực tế của FPGA rất rộng rãi, bao gồm: các hệ thống hàng không, vũ trụ, quốc phòng, tiền thiết kế mẫu ASIC(ASIC prototyping), các hệ thống điều khiển trực quan, phân tích nhận dạng ảnh, nhận dạng tiếng nói, mật mã học, mô hình phần cứng máy tính...Đặc biệt, với khả năng tái lập trình, người sử dụng có thể thay đổi lại thiết kế của mình chỉ trong vài giờ.
Chính vì tính thiết thực mà FPGA đã mang lại, em quyết định chọn FPGA làm hướng nghiên cứu của mình. Trong bài khoá luận này, em xin trình bày một ứng dụng cụ thể của FPGA trong xử lý tín hiệu số đó là “Thực hiện bộ lọc FIR thích nghi dùng thuật toán LMS”. Đề tài được thực hiện tại phòng thí nghiệm mục tiêu “Các hệ tích hợp thông minh ( SIS LAB)” trực thuộc trường Đại học Công nghệ - ĐHQG HN.
Em xin chân thành cảm ơn các thầy cô giáo đặc biệt là PGS.TS Trần Quang Vinh và Th.S Nguyễn Kiêm Hùng đã tận tình hướng dẫn và giúp đỡ em để hoàn thành bản luận văn này một cách tốt đẹp.
Do thời gian và kiến thức có hạn nên công trình này không thể tránh khỏi sai sót, vì vậy em rất mong nhận được các ý kiến đóng góp của các thầy cô và các bạn.
Em xin chân thành cảm ơn !
Hà Nội, Ngày 27 Tháng 3 Năm 2008
Nguyễn Anh Cường
Chương 1
TỔNG QUAN VỀ FPGA VÀ NGÔN NGỮ VHDL
1.1. TỔNG QUAN VỀ FPGA
1.1.1. Lịch sử ra đời của FPGA
FPGA được thiết kế đầu tiên bởi Ross Freeman, người sáng lập công ty Xilinx vào năm 1984, kiến trúc mới của FPGA cho phép tích hợp số lượng tương đối lớn các phần tử bán dẫn vào 1 vi mạch so với kiến trúc trước đó là CPLD. FPGA có khả năng chứa tới từ 100.000 đến hàng vài tỷ cổng logic, trong khi CPLD chỉ chứa từ 10.000 đến 100.000 cổng logic; con số này đối với PAL, PLA còn thấp hơn nữa chỉ đạt vài nghìn đến 10.000.
CPLD được cấu trúc từ số lượng nhất định các khối SPLD (Simple programable logic device) thuật ngữ chung chỉ PAL, PLA. SPLD thường là một mảng logic AND/OR lập trình được có kích thước xác định và chứa một số lượng hạn chế các phần tử nhớ đồng bộ (clocked register). Cấu trúc này hạn chế khả năng thực hiện những hàm phức tạp và thông thường hiệu suất làm việc của vi mạch phụ thuộc vào cấu trúc cụ thể của vi mạch hơn là vào yêu cầu bài toán.
Kiến trúc của FPGA là kiến trúc mảng các khối logic, mỗi khối này nhỏ hơn nhiều nếu đem so sánh với một khối SPLD, ưu điểm này giúp FPGA có thể chứa nhiều hơn các phần tử logic và phát huy tối đa khả năng lập trình của các phần tử logic và hệ thống mạch kết nối, để đạt được mục đích này thì kiến trúc của FPGA phức tạp hơn nhiều so với CPLD.
Một điểm khác biệt nữa với CPLD là trong những FPGA hiện đại được tích hợp nhiều bộ logic số học đã được tối ưu hóa, hỗ trợ RAM, ROM, tốc độ cao, hay các bộ nhân, cộng dùng cho những ứng dụng xử lý tín hiệu số.
Ngoài khả năng cấu trúc lại vi mạch ở mức toàn cục, một số FPGA hiện đại còn hỗ trợ cấu trúc lại ở mức cục bộ, tức là khả năng cấu trúc lại một bộ phận riêng lẻ trong khi vẫn đảm bảo hoạt động bình thường cho các bộ phận khác
1.1.2. Khái niệm cơ bản và cấu trúc của FPGA
FPGA (Field-programmable gate array) là vi mạch dùng cấu trúc mảng phần tử logic mà người dùng có thể lập trình được. Chữ field ở đây muốn chỉ đến khả năng tái lập trình “bên ngoài” tuỳ theo mục đích ứng dụng của người sử dụng, không phụ thuộc vào dây chuyền sản xuất phức tạp của nhà máy bán dẫn. Kiến trúc tổng quan về FPGA được mô tả như hình 1:
Hình 1: Kiến trúc tổng quan của FPGA
Vi mạch FPGA được cấu thành từ các bộ phận:
Các khối logic cơ bản lập trình được (logic block)
Phần tử chính của FPGA là các khối logic (logic block). Khối logic được cấu thành từ LUT và một phần tử nhớ đồng bộ flip-flop. LUT (Look up table) là khối logic có thể thực hiện bất kì hàm logic nào từ 4 đầu vào, kết quả của hàm này tùy vào mục đích mà gửi ra ngoài khối logic trực tiếp hay thông qua phần tử nhớ flip-flop.
Khối logic được mô tả như hình 2:
Hình 2: Khối logic lập trình được của FPGA
Trong tài liệu hướng dẫn của các dòng FPGA của Xilinx còn sử dụng khái niệm SLICE, 1 Slice gồm 4 khối logic tạo thành, số lượng các Slices thay đổi từ vài nghìn đến vài chục nghìn tùy theo loại FPGA.
Hệ thống mạch liên kết lập trình được
Mạng liên kết trong FPGA được cấu thành từ các đường kết nối theo hai phương ngang và đứng, tùy theo từng loại FPGA mà các đường kết nối được chia thành các nhóm khác nhau, ví dụ trong XC4000 của Xilinx có 3 loại kết nối: ngắn, dài và rất dài. Các đường kết nối được nối với nhau thông qua các khối chuyển mạch lập trình được (programable switch), trong một khối chuyển mạch chứa một số lượng nút chuyển lập trình được, đảm bảo cho các dạng liên kết phức tạp khác nhau.
Khối vào/ra (IO Pads)
Khối vào/ra nhiều hay ít là tuỳ thuộc vào từng loại FPGA. Chúng có thể được kết nối với các thiết bị bên ngoài như LED, USB, RS232, RAM....tuỳ theo mục đích sử dụng
Các phần tử tích hợp sẵn
Ngoài các khối logic, tùy theo các loại FPGA khác nhau mà có các phần tử tích hợp thêm khác nhau, ví dụ để thiết kế những ứng dụng SoC, trong dòng Virtex 4, 5 của Xilinx có chứa nhân xử lý PowerPC, hay cho những ứng dụng xử lý tín hiệu số trong FPGA được tích hợp các DSP Slice là bộ nhân, cộng tốc độ cao, thực hiện hàm A*B+C, ví dụ dòng Virtex của Xilinx chứa từ vài chục đến hàng trăm DSP slices với A, B, C 18-bit.
1.1.3. Các ứng dụng của FPGA
Ứng dụng của FPGA bao gồm: xử lý tín hiệu số, các hệ thống hàng không, vũ trụ, quốc phòng, tiền thiết kế mẫu ASIC(ASIC prototyping), các hệ thống điều khiển trực quan, phân tích nhận dạng ảnh, nhận dạng tiếng nói, mật mã học, mô hình phần cứng máy tính...
Do tính linh động cao trong quá trình thiết kế cho phép FPGA giải quyết lớp những bài toán phức tạp mà trước kia chỉ thực hiện nhờ phần mềm máy tính, ngoài ra nhờ mật độ cổng logic lớn FPGA được ứng dụng cho những bài toán đòi hỏi khối lượng tính toán lớn và dùng trong các hệ thống làm việc theo thời gian thực.
1.2. TỔNG QUAN VỀ NGÔN NGỮ VHDL
Thiết kế hay lập trình cho FPGA được thực hiện chủ yếu bằng các ngôn ngữ mô tả phần cứng HDL như VHDL, Verilog ...các hãng sản xuất FPGA lớn như Xilinx, Altera thường cung cấp các gói phần mềm và thiết bị phụ trợ cho quá trình thiết kế, cũng có một số các hãng thứ ba cung cấp các gói phần mềm kiểu này như Synopsys, Synplify... Các gói phần mềm này có khả năng thực hiện tất cả các bước của toàn bộ quy trình thiết kế IC chuẩn với đầu vào là mã thiết kế trên HDL (còn gọi là mã RTL).
Trong bài Luận văn này, có sử dụng ngôn ngữ mô tả phần cứng VHDL, do đó ta chỉ tập chung tìm hiểu về ngôn ngữ VHDL.
1.2.1. Giới thiệu về ngôn ngữ mô tả phần cứng VHDL
VHDL là ngôn ngữ mô tả phần cứng cho các mạch tích hợp tốc độ rất cao, là một loại ngôn ngữ mô tả phần cứng được phát triển dùng cho trương trình VHSIC( Very High Speed Itergrated Circuit) của bộ quốc phòng Mỹ. Mục tiêu của việc phát triển VHDL là có được một ngôn ngữ mô phỏng phần cứng tiêu chuẩn và thống nhất cho phép thử nghiệm các hệ thống số nhanh hơn cũng như cho phép dễ dàng đưa các hệ thống đó vào ứng dụng trong thực tế. Ngôn ngữ VHDL được ba công ty Intermetics, IBM và Texas Instruments bắt đầu nghiên cứu phát triển vào tháng 7 năm 1983. Phiên bản đầu tiên được công bố vào tháng 8-1985. Sau đó VHDL được đề xuất để tổ chức IEEE xem xét thành một tiêu chuẩn chung. Năm 1987 đã đưa ra tiêu chuẩn về VHDL( tiêu chuẩn IEEE-1076-1987).
VHDL được phát triển để giải quyết các khó khăn trong việc phát triển, thay đổi và lập tài liệu cho các hệ thống số. Như ta đã biết, một hệ thống số có rất nhiều tài liệu mô tả. Để có thể vận hành bảo trì sửa chữa một hệ thống ta cần tìm hiểu kỹ lưỡng tài liệu đó. Với một ngôn ngữ mô phỏng phần cứng tốt việc xem xét các tài liệu mô tả trở nên dễ dàng hơn vì bộ tài liệu đó có thể được thực thi để mô phỏng hoạt động của hệ thống. Như thế ta có thể xem xét toàn bộ các phần tử của hệ thống hoạt động trong một mô hình thống nhất.
VHDL được phát triển như một ngôn ngữ độc lập không gắn với bất kỳ một phương pháp thiết kế, một bộ mô tả hay công nghệ phần cứng nào. Người thiết kế có thể tự do lựa chọn công nghệ, phương pháp thiết kế trong khi chỉ sử dụng một ngôn ngữ duy nhất. Và khi đem so sánh với các ngôn ngữ mô phỏng phần cứng khác đã kể ra ở trên ta thấy VHDL có một số ưu điểm hơn hẳn các ngôn ngữ khác:
- Thứ nhất là tính công cộng: VHDL được phát triển dưới sự bảo trợ của chính phủ Mỹ và hiện nay là một tiêu chuẩn của IEEE. VHDL được sự hỗ trợ của nhiều nhà sản xuất thiết bị cũng như nhiều nhà cung cấp công cụ thiết kế mô phỏng hệ thống.
- Thứ hai là khả năng hỗ trợ nhiều công nghệ và phương pháp thiết kế. VHDL cho phép thiết kế bằng nhiều phương pháp, ví dụ phương pháp thiết kế từ trên xuống, hay từ dưới lên dựa vào các thư viện sẵn có. VHDL cũng hỗ trợ cho nhiều loại công cụ xây dựng mạch như sử dụng công nghệ đồng bộ hay không đồng bộ, sử dụng ma trận lập trình được hay sử dụng mảng ngẫu nhiên.
- Thứ ba là tính độc lập với công nghệ: VHDL hoàn toàn độc lập với công nghệ chế tạo phần cứng. Một mô tả hệ thống dùng VHDL thiết kế ở mức cổng có thể được chuyển thành các bản tổng hợp mạch khác nhau tuỳ thuộc công nghệ chế tạo phần cứng mới ra đời nó có thể được áp dụng ngay cho các hệ thống đã thiết kế .
- Thứ tư là khả năng mô tả mở rộng: VHDL cho phép mô tả hoạt động của phần cứng từ mức hệ thống số cho đến mức cổng. VHDL có khả năng mô tả hoạt động của hệ thống trên nhiều mức nhưng chỉ sử dụng một cú pháp chặt chẽ thống nhất cho mọi mức. Như thế ta có thể mô phỏng một bản thiết kế bao gồm cả các hệ con được mô tả chi tiết.
- Thứ năm là khả năng trao đổi kết quả: Vì VHDL là một tiêu chuẩn được chấp nhận, nên một mô hình VHDL có thể chạy trên mọi bộ mô tả đáp ứng được tiêu chuẩn VHDL. Các kết quả mô tả hệ thống có thể được trao đổi giữa các nhà thiết kế sử dụng công cụ thiết kế khác nhau nhưng cùng tuân theo tiêu chuẩn VHDL. Cũng như một nhóm thiết kế có thể trao đổi mô tả mức cao của các hệ thống con trong một hệ thống lớn (trong đó các hệ con đó được thiết kế độc lập).
- Thứ sáu là khả năng hỗ trợ thiết kế mức lớn và khả năng sử dụng lại các thiết kế: VHDL được phát triển như một ngôn ngữ lập trình bậc cao, vì vậy nó có thể được sử dụng để thiết kế một hệ thống lớn với sự tham gia của một nhóm nhiều người. Bên trong ngôn ngữ VHDL có nhiều tính năng hỗ trợ việc quản lý, thử nghiệm và chia sẻ thiết kế. Và nó cũng cho phép dùng lại các phần đã có sẵn.
1.2.2. Cấu trúc một mô hình hệ thống mô tả bằng ngôn ngữ VHDL
Mục đích của phần này sẽ nhằm giới thiệu sơ qua về cấu trúc khung cơ bản của VHDL khi mô tả cho một mô hình thiết kế thực.
Thông thường một mô hình VHDL bao gồm ba phần: thực thể, kiến trúc và các cấu hình. Đôi khi ta xử dụng các gói (packages) và mô hình kiểm tra hoạt động của hệ thống (testbench).
+ Thực thể (entity): Khai báo thực thể trong VHDL là phần định nghĩa các chỉ tiêu phía ngoài của một phần tử hay một hệ thống. Thực chất của việc khai báo thực thể chính là khai báo giao diện của hệ thống với bên ngoài. Ta có thể có tất cả các thông tin để kết nối mạch vào mạch khác hoạc thiết kế tác nhân đầu vào phục vụ cho mục đích thử nghiệm. Tuy nhiên hoạt động thật sự của mạch không nằm ở phần khai báo này
+ Kiến trúc (Architecture): Phần thứ 2 trong mô hình VHDL là khai báo kiến trúc. Mỗi một khai báo thực thể đều phải đi kèm với ít nhất một kiến trúc tương ứng. VHDL cho phép tạo ra hơn một kiến trúc cho một thực thể. Phần khai báo kiến trúc có thể bao gồm các khai báo về các tín hiệu bên trong, các phần tử bên trong hệ thống, hay các hàm và thủ tục mô tả hoạt động của hệ thống. Tên của kiến trúc là nhãn được đặt tuỳ theo người sử dụng. Có hai cách mô tả kiến trúc của một phần tử ( hoặc hệ thống) đó là mô hình hoạt động (Behaviour) hay mô tả theo mô hình cấu trúc (Structure). Tuy nhiên một hệ thống có thể bao gồm cả mô tả theo mô hình hoạt động và mô tả theo mô hình cấu trúc.
+ Mô tả kiến trúc theo mô hình hoạt động: Mô hình hoạt động mô tả các hoạt động của hệ thống ( hệ thống đáp ứng với các tín hiệu vào như thế nào và đưa ra kết quả gì ra đầu ra) dưới dạng các cấu trúc ngôn ngữ lập trình bậc cao. Cấu trúc đó có thể là PROCESS, WAIT, IF, CASE, FOR-LOOP…
+ Mô tả kiến trúc theo mô hình cấu trúc: Mô hình cấu trúc của một phần tử (hoặc hệ thống) có thể bao gồm nhiều cấp cấu trúc bắt đầu từ một cổng logic đơn giản đến xây dựng mô tả cho một hệ thống hoàn thiện. Thực chất của việc mô tả theo mô hình cấu trúc là mô tả các phần tử con bên trong hệ thống và sự kết nối của các phần tử con đó. Như với ví dụ mô tả mô hình cấu trúc một flip-flop RS gồm hai cổng NAND có thể mô tả cổng NAND được định nghĩa tương tự như ví dụ với cổng NOT, sau đó mô tả sơ đồ móc nối các phần tử NAND tạo thành trigơ RS
+ Cấu trúc Process: Process là khối cơ bản của việc mô tả theo hoạt động. Process được xét đến như là một chuỗi các hành động đơn trong suốt quá trình dịch.
Cấu trúc tổng quát:
[tên nhãn]: process
[(danh sách các yếu tố kích thích hoạt động)]
[khai báo các biến]
begin
[các câu lệnh]
end process;
+ Môi trường kiểm tra (testbench): Một trong các nhiệm vụ rất quan trọng là kiểm tra bản mô tả thiết kế. Kiểm tra một mô hình VHDL được thực hiện bằng cách quan sát hoạt động của nó trong khi mô phỏng và các giá trị thu được có thể đem so sánh với yêu cầu thiết kế.
Môi trường kiểm tra có thể hiểu như một mạch kiểm tra ảo. Môi trường kiểm tra sinh ra các tác động lên bản thiết kế và cho phép quan sát hoặc so sánh kết quả hoạt động của bản mô tả thiết kế. Thông thường thì các bản mô tả đều cung cấp chương trình thử. Nhưng ta cũng có thể tự xây dựng chương trình thử (testbench). Mạch thử thực chất là sự kết hợp của tổng hợp nhiều thành phần. Nó gồm ba thành phần: mô hình VHDL đã qua kiểm tra, nguồn dữ liệu và bộ quan sát. Hoạt động của mô hình VHDL được kích thích bởi các nguồn dữ liệu và kiểm tra tính đúng đắn thông qua bộ quan sát.
Chương 2
BỘ LỌC FIR
2.1. BỘ LỌC FIR TRUYỀN THỐNG
Bộ lọc FIR là bộ lọc có đáp ứng xung chiều dài hữu hạn, tức là đáp ứng xung chỉ khác không trong một khoảng có chiều dài hữu hạn N (từ 0 đến N-1). Bộ lọc FIR với bậc của bộ lọc là N được biểu diễn như hình 3:
Hình 3: Cấu trúc của bộ lọc FIR truyền thống
Trong đó:
x[n]: là tín hiệu lối vào của mạch
y[n]: là tín hiệu lối ra của mạch
h[n]: là đáp ứng xung của mạch
Lối ra y[n] và lối vào x[n] liên hệ với nhau bởi công thức:
y[n] =
Để tính được các giá trị y[k] từ các mẫu lối vào x[k] thì các mẫu lần lượt qua các bộ trễ, bộ nhân và bộ cộng. Với bộ lọc FIR có bậc là N thì phải sau N phép nhân và N-1 phép cộng thì mới tính được giá trị của lối ra.
Như vậy, bộ lọc FIR có cấu trúc như trên có nhược điểm là khả năng đáp ứng chậm, các mẫu lối ra không được liên tục mà sau một khoảng thời gian tính toán xong các phép nhân và phép cộng mới được xuất ra.
Để khắc phục nhược điểm đó, ta sử dụng kiến trúc systolic array để nâng cao khả năng đáp ứng của mạch
2.2. BỘ LỌC FIR SỬ DỤNG KIẾN TRÚC SYSTOLIC ARRAY
2.2.1. Tổng quan về systolic array
Systolic array là cấu trúc xử lý song song đặc biệt chứa các khối xử lý dữ liệu (data processing unit gọi tắt là DPU), các khối xử lý này được sắp xếp thành một mạng. DPU tương tự như CPU nhưng nó không có bộ đếm chương trình. Từng khối DPU như là một trigger truyền thông bởi sự luân chuyển dữ liệu từ DPU này đến các DPU lân cận. Thông thường, những dữ liệu khác nhau thì sẽ luân chuyển theo các hướng khác nhau. Các luồng dữ liệu tới và rời khỏi các cổng DPU được phát từ ASM (Auto senquencing memory là thành phần không thể thiếu của cấu trúc Non-Von-Neumann. Trong cấu trúc này, cơ chế senquencing đóng vai trò là bộ đếm chương trình). Mỗi ASM đóng vai trò là bộ đếm dữ liệu. Trong hệ thống này, luồng dữ liệu vào có thể vào từ đầu ra của thiết bị ngoại vi và ngược lại.
Các bộ xử lý (DPU) tính toán dữ liệu, lưu trữ dữ liệu theo những cách độc lập với nhau. Các bộ xử lý này có thể có một vài thanh ghi và khối ALU. Các DPU có khả năng lưư trữ và xử lý dữ liệu độc lập với nhau. Mỗi DPU sau khi xử lý dữ liệu xong sẽ chia sẻ dữ liệu cho các Cell lân cận.
Trong hình 4, mô tả kiến trúc Systolic array một chiều, dữ liệu chuyển động theo một hướng
PE
PE
PE
PE
PE
Hình 4: Cấu trúc systolic array một chiều
Hình 5 mô tả kiến trúc systolic array hai chiều, dữ liệu chuyển động hai hướng theo chiều của mũi tên qua các bộ DPU. Dữ liệu ra cũng theo hai hướng
Hình 5: Kiến trúc systolic array hai chiều
2.2.2. Bộ lọc FIR thực hiện theo kiến trúc systolic array một chiều
Để cho việc xử lý dữ liệu được nhanh hơn, bộ lọc FIR theo kiến trúc Systolic array sẽ bao gồm một dãy các phần tử xử lý hay còn gọi là PE (Process Element). Trong cùng một thời điểm, các PE sẽ thực hiện đồng thời các nhiệm vụ riêng, và do đó, tín hiệu ở lối ra sẽ được đưa ra một cách liên tục mà không phải mất một khoảng thời gian để tính toán do nó đã được tính từ trước đó.
Cấu trúc của một PE của bộ lọc FIR SYSTOLIC được trình bày như trong hình 6
Hình 6: Cấu trúc của một PE
Như vậy, cấu trúc của bộ lọc FIR Systolic với bậc bộ lọc là N, gồm N+1 PE được trình bày như hình 7
x aN
+
…..
…..
x ao
+
xin
Yin
xout
Hình 7: Cấu trúc bộ lọc FIR systolic bậc N
yout
Khác với bộ lọc FIR thông thường, đầu ra của bộ cộng lại được đưa qua 2 bộ chốt để làm trễ, nó có tác dụng chia đường truyền tín hiệu của mạch thành những đoạn nhỏ, do đó làm tăng tần số hoạt động của mạch, đồng thời làm cho tín hiệu xin và yin vào bộ cộng cùng một lúc, do đó, tín hiệu ra sẽ được liên tục, đáp ứng nhanh, bởi việc tính toán đã được thực hiện trước đó.
Với việc chia đường truyền dài nhất của mạch thành những đoạn nhỏ nhờ các thanh ghi chốt, ta còn có thể tối ưu bộ lọc FIR systolic hơn nữa. Hình 8 mô tả cấu trúc tối ưu của bộ lọc FIR systolic.
x aN
+
…..
…..
x ao
+
xin
Yin
xout
Hình 8: Cấu trúc tối ưu của bộ lọc FIR systolic bậc N
yout
Mô hình này về ý tưởng vẫn giống mô hình trước, bao gồm các thanh ghi chốt, bộ cộng, bộ nhân của mô hình trước, tuy nhiên, có sự thay đổi vị trí của các thanh ghi chốt, trước bộ nhân và bộ cộng ta chèn thêm một thanh ghi chốt vào để chia nhỏ đường truyền tín hiệu. Do đó, làm cho tần số hoạt động của mạch tăng lên.
Chương 3
BỘ LỌC FIR THÍCH NGHI DÙNG THUẬT TOÁN LMS
3.1. ĐẶT VẤN ĐỀ
Thu