- Gồm 2 nhóm:
Nhóm 1: họ Lantan được đặc trưng bởi lớp 4f lấp đầy, bắt đầu với nguyên tố Ce (Z=58) và kết thúc là Lu (Z=71)
Nhóm 2: họ Actini được đặc trưng bởi lớp 5f lấp đầy, từ Th (Z=90) đến Lr (Z=103)
Mặc dù những nguyên tố này có chung nhiều tính chất điện, nhưng chỉ có họ Lantan là được đề cập đến vì chúng có một vai trò rất quan trọng trong các bộ khuếch đại và laser, còn các nguyên tố trong họ Actini không có đồng vị đủ bền phù hợp với yêu cầu của các thiết bị nói trên.
Chúng ta biết rằng, cấu tạo của nguyên tử gồm một hạt nhân được bao quanh bởi các lớp điện tử. Thông thường, các lớp điện tử này được lấp đầy theo thứ tự sao cho các lớp vỏ sẽ có bán kính tăng dần. Tuy nhiên, đến vị trí nguyên tử thứ 57 (Z = 57) thì quy luật này bị phá vỡ. Ở nguyên tử thứ 57, lớp 5s và 5p (5s25p6) được lấp đầy trước sau đó các điện tử mới tiếp tục lấp đầy lớp 4f. Thay vì có bán kính lớn hơn lớp 5s và 5p, lớp 4f có bán kính nhỏ hơn hai lớp này nên nó bị bao bọc bởi các lớp này. Do các nguyên tố thuộc họ Lantan có số nguyên tử từ 58 đến 71 nên chúng đều tuân theo quy luật trên. Đây là đặc tính quan trọng nhất của các nguyên tố đất hiếm được gọi là sự co lại của họ Lantan.
Hầu hết các nguyên tố đất hiếm đều tồn tại dưới dạng ion đặc biệt là ion hoá trị III bởi đây là dạng ổn định nhất của chúng. Các nguyên tố đất hiếm trung hòa đều có cấu hình điện tử 4fN6s2 hoặc 4fN ־15d6s2, quá trình ion hóa xảy ra đầu tiên là khử 2 điện tử yếu ở lớp 6s, sau đó là khử tiếp điện tử tại lớp 4f hoặc 5d. Do vậy các ion đất hiếm họ Lantan hóa trị ba đều có một lõi Xenon (1s22s22p63s23p63d104s24p64d105s25p6) và N điện tử lớp 4f. Nhờ sự che chắn của các điện tử lớp 5s và 5p nên các tính chất của lớp vỏ 4f gần như được giữ nguyên trong nguyên tử khi pha trong các môi trường thủy tinh hoặc tinh thể.
32 trang |
Chia sẻ: oanhnt | Lượt xem: 1611 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Đề tài Tìm hiểu về khuếch đại quang sợi pha tạp đất hiếm Er3+, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
LỜI CẢM ƠN
Trước hết tôi xin chân thành cảm ơn tới PGS.TS Phạm Văn Hội, người đã giúp đỡ và chỉ bảo tận tình trong suốt quá trình thực tập.
Tôi xin chân thành cảm ơn tới toàn thể cán bộ làm việc tại phòng Vật Liệu và Ứng dụng Quang Sợi, Viện Khoa Học Vật Liệu đã quan tâm, giúp đỡ và tạo mọi điều kiện về cơ sở vật chất cũng như thiết bị cho việc nghiên cứu để tôi hoàn thành tốt đợt thực tập này.
Hà Nội, ngày 06 tháng 02 năm 2007
Sinh viên
Dương Xuân Chung Mục lục
Phần 1: Cơ sở lý thuyết
1. Sợi quang pha tạp đất hiếm
1.1 Các nguyên tố đất hiếm
1.2 Nguyên tố Er
1.2.1 Các mức năng lượng của Er3+ khi pha tạp vào thủy tinh SiO2
1.2.2 Phổ hấp thụ và phát xạ của Er3+ bơm bằng laser ở bước sóng 980nm
1.2.3 Thành phần và nồng độ pha tạp
1.2.4 Các bước sóng bơm thích hợp cho Er3+
2. Khuếch đại quang sợi pha tạp Er3+2.1 Giới thiệu
2.2. Cấu tạo sợi quang pha tạp Er3+
2.3 Nguyên lý của khuếch đại quang sợi pha tạp đất hiếm Er3+
2.3.1 Hệ phương trình tốc độ
2.3.2 Hệ phương trình truyền dẫn
2.4 Các thông số của bộ khuếch đại
2.4.1 Phổ tăng ích và băng tần
2.4.2 Hệ số khuếch đại
2.4.3 Tăng ích bão hòa
2.4.4 Phổ ASE
2.4.5 Thông số tạp âm
2.5 Các cấu hình bơm cho khuếch đại EDFA
2.6 Các ứng dụng của khuếch đại EDFA trong mạng truyền dẫn quang
Phần 2: Thực nghiệm
1. Sơ đồ hệ đo
2. Khảo sát phổ khuếch đại bức xạ tự phát ASE
3. Khảo sát các thông số của các bộ khuếch đại EDFA
Hệ số khuếch đại
Băng tần khuếch đại
Công suất ra bão hòa
Thông số tạp âmPhần 1: Cơ sở lý thuyết
1. Sợi quang pha tạp đất hiếm:
1.1 Các nguyên tố đất hiếm
- Gồm 2 nhóm:
Nhóm 1: họ Lantan được đặc trưng bởi lớp 4f lấp đầy, bắt đầu với nguyên tố Ce (Z=58) và kết thúc là Lu (Z=71)
Nhóm 2: họ Actini được đặc trưng bởi lớp 5f lấp đầy, từ Th (Z=90) đến Lr (Z=103)
Mặc dù những nguyên tố này có chung nhiều tính chất điện, nhưng chỉ có họ Lantan là được đề cập đến vì chúng có một vai trò rất quan trọng trong các bộ khuếch đại và laser, còn các nguyên tố trong họ Actini không có đồng vị đủ bền phù hợp với yêu cầu của các thiết bị nói trên.
Chúng ta biết rằng, cấu tạo của nguyên tử gồm một hạt nhân được bao quanh bởi các lớp điện tử. Thông thường, các lớp điện tử này được lấp đầy theo thứ tự sao cho các lớp vỏ sẽ có bán kính tăng dần. Tuy nhiên, đến vị trí nguyên tử thứ 57 (Z = 57) thì quy luật này bị phá vỡ. Ở nguyên tử thứ 57, lớp 5s và 5p (5s25p6) được lấp đầy trước sau đó các điện tử mới tiếp tục lấp đầy lớp 4f. Thay vì có bán kính lớn hơn lớp 5s và 5p, lớp 4f có bán kính nhỏ hơn hai lớp này nên nó bị bao bọc bởi các lớp này. Do các nguyên tố thuộc họ Lantan có số nguyên tử từ 58 đến 71 nên chúng đều tuân theo quy luật trên. Đây là đặc tính quan trọng nhất của các nguyên tố đất hiếm được gọi là sự co lại của họ Lantan.
Hầu hết các nguyên tố đất hiếm đều tồn tại dưới dạng ion đặc biệt là ion hoá trị III bởi đây là dạng ổn định nhất của chúng. Các nguyên tố đất hiếm trung hòa đều có cấu hình điện tử 4fN6s2 hoặc 4fN ־15d6s2, quá trình ion hóa xảy ra đầu tiên là khử 2 điện tử yếu ở lớp 6s, sau đó là khử tiếp điện tử tại lớp 4f hoặc 5d. Do vậy các ion đất hiếm họ Lantan hóa trị ba đều có một lõi Xenon (1s22s22p63s23p63d104s24p64d105s25p6) và N điện tử lớp 4f. Nhờ sự che chắn của các điện tử lớp 5s và 5p nên các tính chất của lớp vỏ 4f gần như được giữ nguyên trong nguyên tử khi pha trong các môi trường thủy tinh hoặc tinh thể.
- Phổ năng lượng:
(4f)2
3F4
3F3
3F
3H
3F2
3H6
3H5
3H4
1G
1G4
Năng lượng
Sơ đồ sự tách mức năng lượng của ion Er3+ do tương tác điện tử - điện tử và tương tác điện tử - trường tinh thể
+ Thông thường các nguyên tử trong chất bán dẫn hoặc kim loại nhường điện tử của chúng cho môi trường nên có phổ năng lượng rất rộng. Tuy nhiên phổ của ion đất hiếm pha tạp trong các chất cách điện như thủy tinh hay tinh thể lại có phổ năng lượng bao gồm một dãy các vạch hẹp. Nguyên nhân là các lớp điện tử 4f gần như vẫn giữ được cấu trúc trạng thái như trong các nguyên tử đất hiếm.
+ dưới tác dụng của trường tinh thể nền, các mức điện tử của lớp vỏ 4f tiếp tục bị tách ra thành rất nhiều vạch làm cho các mức năng lượng của lớp 4f tiếp tục bị tách ra do hiệu ứng Stark. Do vậy quang phổ của lớp vỏ 4f gồm nhiều vạch trong một dải khá rộng.
Sơ đồ tách mức năng lượng của ion Er3+ do tương tác điện tử - điện tử và tương tác điện từ - trường tinh thể.
1.2 Nguyên tố Er (Z=68) : 4s24p64d104f115s25p65d16s2
Erbium là nguyên tố được chú ý đặc biệt, vì chúng có khả năng khuếch đại quang ở vùng bước sóng 1550nm, là vùng cửa sổ thông tin thứ 3 của sợi quang thủy tinh SiO2. Tại vùng bước sóng 1550nm, suy hao trong sợi quang SiO2 là nhỏ nhất.
1.2.1 Các mức năng lượng của Er3+ khi pha tạp vào thủy tinh SiO2:
Sơ đồ các mức năng lượng và các trạng thái dịch chuyển của ion Er3+:
1480
980
800
670
532
514
485
450
440
410
1660
540
850
1220
1720
640
980
1540
2750
2P3/2
2G7/2
4G11/2
4F3/2
2H11/2
4F9/2
4I9/2
4I11/2 ms
4I13/2 ms
4I15/2
2H9/2
4F5/2
4F7/2
4S3/2
35
30
25
20
15
10
5
0
Các dịch chuyển hấp thụ
(tính theo nm)
Các dịch chuyển phát xạ
(tính theo nm)
Năng lượng (103cm-1)
Sơ đồ các mức năng lượng và các trạng thái dịch chuyển của ion Er3+
Đặc trưng quan trọng của ion Er3+ ở đây là nó có mức 4I13/2 là mức siêu bền (mức kích thích), với thời gian sống của các hạt tải này lên đến 10ms, trong khi đó thời gian sống của các hạt tải tại mức 4I11/2 (mức bơm) chỉ cỡ vài ms. Do đó nếu ta kích thích bằng chùm laser 980nm, các ion Er3+ sẽ được kích thích lên mức 4I13/2, và sau một thời gian rất ngắn cỡ vài ms, chúng sẽ dịch chuyển không bức xạ xuống mức 4I13/2 với thời gian sống tại mức này gấp vạn lần thời gian sống tại mức 4I13/2. Điều này cho chúng ta tạo ra nghịch đảo mật độ trong môi trường thủy tinh SiO2 pha tạp Er3+ (giữa 2 mức 4I13/2 và mức cơ bản 4I15/2).
Các kết quả đo đạc thực nghiệm đã phù hợp với tính toán lý thuyết bằng việc đo phổ hấp thụ của silica pha tạp Er :
400
800
600
1000
1200
1400
1600
0
2
4
6
8
10
Bước sóng λ(nm)
Hấp thụ (dB/m)
Phổ hấp thụ của sợi thủy tinh gốc pha tạp Er3+
Chúng ta quan tâm đến các vạch phổ có bước sóng 800nm, 980nm, 1530nm tương ứng với các mức 4I9/2, 4I11/2, 4I13/2.
Trong môi trường SiO2 vô định hình do tương tác mạnh với mạng nền, các mức năng lượng của ion Er3+ được mở rộng thành các vùng hẹp do hiệu ứng Stark (tách vạch trong từ trường). Vì vậy mà ta có rất nhiều mức năng lượng gần nhau được sử dụng, điều này rất cần thiết trong khi truyền tín hiệu trong sợi quang thông tin (công nghệ WDM).
1.2.2 Phổ hấp thụ và phát xạ của Er3+ bơm bằng laser ở bước sóng 980nm
Bước sóng λ(nm)
1400
1450
1500
1550
1600
1650
6
5
4
3
2
1
Tiết diện σ(10-21cm2)
Phổ hấp thụ và phát xạ của ion Er3+ trong thủy tinh silica
trong vùng bước sóng 1400nm đến 1650nm.
Hấp thụ
Phát xạ
Khi pha tạp Er3+ vào thủy tinh tương tác của các ion Er3+ với mạng không đồng đều nhau, đồng thời sự tách mức ở mức năng lượng trên và mức năng lượng dưới cũng không giống nhau. Các mức năng lượng được tách thành nhiều vạch phân bố sít nhau, nên phổ hấp thụ và phát xạ phân bố trong một vùng rộng.
Trên ảnh phổ ta thấy, vùng bước sóng từ 1540nm đến 1650nm có tiết diện phát xạ lớn hơn tiết diện hấp thụ, nên vùng này sẽ có hiệu ứng khuếch đại khi tín hiệu quang đi qua thủy tinh pha tạp Er3+.
Phổ phát xạ có hai đỉnh 1530nm và 1557nm do sự tách mức năng lượng 4I15/2 và 4I13/2 không đều. Do đường cong phát xạ không bằng phẳng trong vùng cửa sổ thông tin 1525-1565 nm nên hệ số khuếch đại quang sẽ không đồng đều cho các kênh khác nhau. Do đó người ta tìm cách pha tạp thêm các chất khác nhau như Al, P.. để làm phẳng phổ trong vùng này.
1.2.3 Thành phần và nồng độ pha tạp:
Khi pha tạp Er3+ nồng độ cao, sẽ xuất hiện hiện tượng tụ đám và hiệu suất khuếch đại giảm do tương tác ion – ion của hai ion gần nhau
- Để tăng độ hòa tan của Er3+ trong silica (SiO2 – Al2O3 – Er3+) : pha tạp thêm Al
- Tăng độ hấp thụ năng lượng bơm tron thủy tinh silica pha tạp Er3+ : pha tạp đồng thời các ion Y, Yb (giúp truyền năng lượng bơm, nên hiệu suất chuyển đổi năng lượng tăng lên)
- Kết quả trên các mẫu thủy tinh pha tạp Er3+ bằng phương pháp sol-gel đã cho thấy phổ phát xạ có đỉnh tại bước sóng 1530nm với một bờ vai nhô ra ở bước sóng 1550nm độ rộng phổ phát xạ đã tăng lên khi nồng độ ion Er3+ pha tạp tăng lên.
Cường độ phát xạ lớn nhất với mẫu chỉ pha tạp Er3+ là 3% trọng lượng. Khi đưa thêm Al3+ vào, vạch phát xạ chính bị mở rộng ra và cường độ phát xạ tăng rất nhiều lần so với mẫu cùng nồng độ Er3+. Như vậy sự phân bố các vị trí Er3+ trong thủy tinh SiO2-Al2O3 rộng hơn trong thủy tinh SiO2, nguyên nhân do các ion Al3+ đã hình thành một lớp bao bọc phía ngoài ion oxy và kéo dãn liên kết Er-O, làm yếu đi liên kết này tạo điều kiện đưa thêm các ion Er3+ khác vào.
1.2.4 Các bước sóng bơm thích hợp cho Er3+:
Theo sơ đồ mức năng lượng của Er3+ ta thấy có thể bơm cho sợi khuếch đại bằng nhiều bước sóng khác nhau:
810nm : 4I5/2 lên 4I9/2 xuống 4I13/2
980nm : 4I9/2 lên 4I11/2
1480nm: 4I15/2 lên 4I13/2
Bằng cách sử dụng laser bán dẫn ở các bước sóng tương ứng
Với bước sóng bơm 810nm ion Er3+ đã nằm trên mức kích thích 4I3/2 có thể hấp thụ thêm một photon nữa để nhảy lên mức 2H11/2, mức này sẽ chuyển dời phonon về mức 4I3/2, như vậy ta bị mất photon do chuyển thành nhiệt, làm hiệu suất bơm giảm.
Với bước sóng 980nm và 1480nm hầu như không có hiện tượng hấp thụ hai photon và đây là bước sóng của laser bán dẫn thông dụng hiện nay, nên hai bước sóng này thường dùng để bơm trong lĩnh vực khuếch đại quang sợi pha tạp Er.
Bước sóng 980nm có tạp âm ở lối ra bé hơn, nhưng đòi hỏi bước sóng bơm phải chính xác. Còn bước sóng 1480nm cho hiệu suất bơm cao hơn, và có thể dùng để bơm từ xa cho các bộ khuếch đại trên tuyến. Nhưng tạp âm sinh ra lớn hơn so với bước sóng 980nm.
2. Khuếch đại quang sợi pha tạp Er3+
2.1 Giới thiệu
- Sợi quang có nhiều ưu điểm vượt trội so với kim loại như: suy hao truyền dẫn thấp, dung lượng truyền cao, ít bị ảnh hưởng của nhiễu điện tử và hoạt động tin cậy hơn.
- Tín hiệu quang trong cáp quang bị suy hao do nhiều nguyên nhân như: sự hấp thụ ánh sáng trong sợi, ánh sáng đi ra khỏi sợi do biến dạng ở các đoạn cong,… nên ta phải khuếch đại năng lượng của nó ở những khoảng cách nhất định để đảm bảo tín hiệu đến nơi thu đạt yêu cầu.
- Trước đây người ta sử dụng các trạm lặp quang – điện tử (bộ khuếch đại lặp), trong đó tín hiệu quang đã suy giảm được biến đổi thành tín hiệu điện (O/E), tín hiệu điện này được khuếch đại, sửa dạng và biến đổi ngược lại thành tín hiệu quang (E/O) để truyền đi => tốn kém và phức tạp khi công nghệ ghép nhiều bước sóng trên một sợi quang được sử dụng (WDM) : như lắp ráp, điều khiển các bộ ghép, tách các kênh truyền tại các bộ khuếch đại lặp
- Khuếch đại quang sợi pha tạp đất hiếm Er3+ (Erbium doped Fiber Amplifier – EDFA)
Khuếch đại quang sợi EDFA có băng tần khuếch đại khá rộng, có thể khuếch đại đồng thời hàng trăm bước sóng trong dải 1525-1565nm. Đặc biệt là khuếch đại quang sợi pha tạp Er3+ không nhạy với phân cực của chùm sáng tới, do đó có thể rất dễ dàng trong mọi tuyến truyền dẫn quang sợi
2.2 Cấu tạo sợi quang pha tạp Er3+:
Vỏ bảo vệ
Lớp chiết suất n2 Đường kính 125μm
Lớp chiết suất n1
Lỡi pha tạp Er+3 Đường kính 3μm
Cấu tạo sợi quang đơn mốt pha tạp Er+3
Môi trường khuếch đại quang là sợi dẫn quang bằng thủy tinh có pha tạp Er3+ với các nồng độ khác nhau. Nồng độ pha tạp về nguyên tắc càng cao càng tốt để giảm chiều dài sợi khuếch đại. Tuy nhiên trong thực tế các ion đất hiếm có độ hòa tan thấp trong môi trường thủy tinh silica, vì vậy khi pha tạp Er3+ nồng độ cao trong thủy tinh SiO2 hiệu ứng tụ đám các ion Er3+ sẽ hấp thụ ngược ánh sáng nên hệ số khuếch đại giảm đáng kể.
- Sợi quang đa mode pha tạp Er3+ tiêu chuẩn sử dụng trong laser sợi quang có cấu trúc lõi dẫn sáng đường kính 50micron, đường kính lớp vỏ 125micron, khẩu độ số N.A=0,2 - 0,25. Trong lõi dẫn sáng người ta pha tạp Er3+ tại tâm sợi quang. Đường kính vùng pha tạp từ 15 đến 30micron. Nồng độ pha tạp ion Er3+ từ 0,1% đến 1,2%.
- Sợi quang đơn mode pha tạp Er3+ tiêu chuẩn sử dụng trong laser sợi quang có cấu trúc lõi dẫn sáng đường kính 9micron, đường kính lớp vỏ 125micron. Đường kính vùng pha tạp từ 2 đến 3 micron. Nồng độ pha tạp ion Er3+ từ nồng độ thấp n1000ppm. Các loại sợi pha tạp hiện nay dùng khuếch đại quang trong thông tin có n = 2500ppm.
Cấu tạo sợi quang pha tạp Er có kích thước giống như sợi quang truyền tín hiệu nên việc hàn nối các sợi với nhau rất dễ dàng.
2.3 Nguyên lý của khuếch đại quang sợi pha tạp đất hiếm Er3+:
Là khuếch đại ánh sáng bằng phát xạ cưỡng bức trong môi trường đảo mật độ. Để tạo được trạng thái đảo mật độ trong môi trường hoạt tính bằng phương pháp bơm quang học, chúng ta xét đến mô hình khuếch đại quang sử dụng bơm 3 hoặc 4 mức năng lượng. Các bộ khuếch đại EDFA tuân theo sơ đồ 3 mức.
4I11/2
4I13/2
Các nguyên tử Erbium bị kích thích lên mức năng lượng cao
−1μs
Bức xạ kích thích
λ=1520 ÷ 1620 nm
Các nguyên tử Erbium tại mức năng lượng thấp
λ=980nm
λ=1480nm
Các nguyên tử Er tại mức
siêu bền (−10ms)
4I15/2
Nguyên lý khuếch đại quang bằng phát xạ cưỡng bức trong
môi trường đảo mật độ của sợi quang pha tạp Er3+
2.3.1 Hệ phương trình tốc độ:
Xét hệ 3 mức năng lượng:
1
2
3
Φpσp
Φsσs
Г32
Г21
Sơ đồ hệ 3 mức năng lượng
Mức 1 là mức năng lượng cơ bản (E1=0) (tương ứng với trạng thái 4I15/2 trong cấu trúc năng lượng của Er3+).
Mức 2 là mức laser trên, thời gian sống ở mức này phải lớn hơn nhiều so với các trạng thái trên (tương ứng với trạng thái 4I13/2).
Mức 3 là mức kích thích khi nguyên tử hấp thụ năng lượng bơm, đây là mức trung gian để tạo sự nghịch đảo phân bố mật độ giữa mức 2 và 1, thời gian sống ở mức này rất ngắn (cỡ ms) (tương ứng với trạng thái 4I11/2).
Khi các nguyên tử nhận năng lượng từ nguồn bơm bên ngoài có tần số bơm thích hợp, chúng sẽ bị kích thích lên mức 3. Do thời gian sống tại mức 3 rất ngắn nên chúng sẽ bị dịch chuyển rất nhanh xuống mức 2 thông qua dịch chuyển phonon (dịch chuyển không phát xạ). Thời gian sống của các nguyên tử tại mức 2 rất dài, cỡ ms nên chúng có thể tồn tại khá lâu tại mức này và vì vậy chúng có thể tạo ra nghịch đảo độ tích lũy so với mức 1. Khi một nguyên tử tại mức kích thích 2 này tương tác với một photon tín hiệu tới, nó sẽ nhảy xuống mức 1 và bức xạ ra một photon có tần số và pha giống hệt như photon tới (bức xạ kích thích). Đây chính là nguyên lý để chế tạo các bộ khuếch đại quang sợi pha tạp đất hiếm Er3+.
Hệ phương trình tốc độ cho hệ 3 mức năng lượng trên như sau:
p là thông lượng của chùm sáng tới có tần số ứng với dịch chuyển từ mức 1 lên mức 3 ( số photon trong một đơn vị thời gian trên một đơn vị diện tích), tương ứng với bơm.
s là thông lượng của chùm sáng tới có tần số ứng với dịch chuyển từ mức 1 lên mức 2, tương ứng với tín hiệu.
là xác xuất dịch chuyển không phát xạ từ mức 3 xuống mức 2 (coi dịch chuyển phát xạ từ mức 2 xuống mức 3 là rất bé)
là xác xuất dịch chuyển phát xạ từ mức 2 xuống mức 1, nếu là thời gian sống tại mức 2 ta sẽ có:
Với và lần lượt là tiết diện hấp thụ từ mức 1 lên mức 3 và tiết diện bức xạ từ mức 2 xuống mức 1. Ở trạng thái dừng, ta có:
Tổng độ tích lũy tại 3 mức là : N = N1+N2+N3
Độ tích lũy tại mức 3:
Do tốc độ phân rã từ mức 3 xuống mức 2 rất nhanh, nhanh hơn rất nhiều tốc độ tác động của nguồn bơm, nên độ tích lũy ở mức 3 gần như là bằng 0 vì vậy ta sẽ coi toàn bộ độ tích lũy chỉ gồm mức 1 và 2.
Thay vào ta được:
Nghịch đảo độ tích lũy:
=> điều kiện để có nghịch đảo độ tích lũy là N2>>N1
Điều kiện ngưỡng ứng với , ta có thông lượng tối thiểu cho tốc độ bơm:
Trong trường hợp cường độ tín hiệu rất nhỏ và tốc độ phân rã lớn hơn nhiều so với tốc độ bơm , ta có phân số đảo mật độ:
với
Khi phân số đảo mật độ là âm, chuyển dời do hấp thụ sẽ lớn hơn chuyển dời do bức xạ, tín hiệu sẽ bị suy hao. Ngược lại nếu phân số đảo mật độ là dương thì tín hiệu đi qua sợi quang sẽ được khuếch đại. Từ công thức về cường độ bơm (năng lượng trên một đơn vị diện tích trong một đơn vị thời gian) được cho bởi , ta có cường độ bơm ngưỡng:
Từ phương trình trên ta thấy rằng tiết diện hấp thụ càng cao tức là xác suất hấp thụ photon bơm càng lớn thì số photon bơm cần thiết để đảm bảo lượng photon được hấp thụ đạt ngưỡng sẽ thấp đi hay sẽ thấp đi. Thêm vào đó, thời gian sống tại mức 2 càng dài tức là năng lượng tích lại ở mức 2 càng lâu thì lưọng photon cần bơm trong một đơn vị thời gian để giữ được năng lượng ở lại mức 2 (hay để tạo được nghịch đảo độ tích luỹ) sẽ giảm bớt.
Vì vậy, điều kiện để có ngưỡng bơm thấp sẽ là:
- Tiết diện hấp thụ lớn
- Thời gian sống tại mức 2 (một điểm hết sức thuận lợi của sợi quang pha tạp Er3+ là chúng có thời gian sống tại mức kích thích 4I13/2 rất lớn, cỡ 10ms).
2.3.2 Hệ phương trình truyền dẫn:
Sử dụng sơ đồ 3 mức năng lượng như ở phần trên, mật độ tích luỹ (số lượng ion trong một đơn vị thể tích) tại các mức 1, 2 và 3 lần lượt là N1, N2, và N3, ta sẽ xét sóng tín hiệu và sóng bơm truyền theo cùng một hướng dọc theo trục z của sợi quang lần lượt có cưòng độ là và .
Sự thay đổi của sóng tín hiệu và sóng bơm khi đi qua một đoạn vô cùng nhỏ dz la:
Từ đó, ta thu được sự tăng cường cường độ tín hiệu:
Và sự suy hao cường độ bơm:
Từ đây, ta thấy rõ ràng tín hiệu chỉ có thể được khuếch đại khi:
2.4 Các thông số của bộ khuếch đại quang EDFA
2.4.1 Phổ tăng ích và băng tần
Hệ số tăng ích quang trong môi trường khuếch đại phụ thuộc vào tần số (hay bước sóng) của tín hiệu quang tới và cường độ chùm ánh sáng khuếch đại tại các điểm khác nhau của bộ khuếch đại quang.
Để đơn giản, chúng ta giả thiết môi trường khuếch đại là một hệ hai mức năng lượng mở rộng đồng nhất. Hệ số tăng ích g(w) trong môi trường khuếch đại được tính bằng biểu thức sau:
Trong đó:
g0 là giá trị tăng ích cực đại,
w là tấn số của tín hiệu quang tới,
w0 là tấn số chuyển dời nguyên tử,
P là công suất quang của chùm sáng tới và
Ps là công suất bão hòa của bộ khuếch đại, phụ thuộc vào các thông số của môi trường khuếch đại như T1 thời gian phát xạ huỳnh quang (flourescence time) và tiết diện dịch chuyển của nguyên tử kích thích. T2 là thời gian phục hồi lưỡng cực (dipole relaxtion time) thường có giá trị rất nhỏ (T2 <1ps). Thời gian phát xạ huỳnh quang cũng được gọi là thời gian phục hồi mật độ hạt tải. T1 có giá trị trong khoảng 100ps ÷ 10ms phụ thuộc vào môi trường khuếch đại.
Biểu thức có thể sử dụng để tính toán các đặc trưng quan trọng của khuếch đại quang như băng tần khuếch đại, hệ số khuếch đại và công suất ra bão hòa.
Ta xét trường hợp bộ khuếch đại EDFA hoạt động ở chể độ không bão hòa, nghĩa là P<<Ps trên toàn bộ khuếch đại. Khi đó ta có thể bỏ qua tỷ số P/Ps, ta có:
Ta thấy g(w) đạt giá trị cực đại khi tần số ánh sáng tới trùng với tần số dịch chuyển nguyên tử. Khi tăng ích giảm tuân theo quy luật hàm Lorentz là quy luật áp dụng cho hệ hai mức năng lượng mở rộng đồng nhất.
Băng tần tăng ích được xác định bằng độ rộng của phổ tăng ích tại điểm giữa giá trị cực đại (FWHM – Full Width at Half Maximum).
Với phổ Lorentz, băng tần tăng ích được cho bởi: hay:
2.4.2 Hệ số khuếch đại
- Hệ số khuếch đại G là tỷ số giữa công suất tín hiệu lối ra trên tín hiệu lối vào, và được tính theo đơn vị dB:
- Người ta có thể tính hệ số khuếch đại quang theo cách khác:
Tín hiệu và bơm truyền dọc theo chiều dài sợi, xét phân bố năng lượng theo trục Z
Khi tín hiệu vào bộ khuếch đại nhỏ ta có phân bố năng lượng bơm dọc theo sợi xem như đồng đều, khi đó công suất tín hiệu quang tăng theo hàm mũ.
P(z) là công suất quang tại tọa độ z tính từ lối vào bộ khuếch đại: P(z)=P(0).exp(gz)
Với P(0)=Pin,
Khi z=L (độ dài bộ khuếch đại) thì P(z=L)=Pout=P(0).exp(gL)
Vậy : G(w) =Pout/Pin= exp[g(w)L)]
Hệ số khuếch đại quang trong môi trường khuếch đại phụ thuộc vào tần số của tín hiệu quang tới, cường độ chùm sáng khuếch đại tại các điểm khác nhau của bộ khuếch đại quang và chiều dài sợi quang pha tạp Er3+
Cường độ (a.u)
Bước sóng λ