Trong thời kỳ phát triển và hội nhập, cộng với việc gia nhập tổ chức WTO đã mở cho đất nước ta rất nhiều cơ hội lớn nhưng cũng không ít những thách thức lớn. Trước một thực tại như vậy , nước ta lại phải cùng một lúc giải quyết ba nhiệm vụ : Thoát khỏi tình trạng nghèo nàn lạc hậu của nền kinh tế nông nghiệp ; đẩy mạnh công nghiệp hóa , hiện đại hóa và đồng thời tiếp cận ngay với nền kinh tế tri thức . Để làm nên sự nghiệp ấy đòi hỏi rất nhiều yếu tố tác động tới, trong đó có việc thích ứng ngay với nền kinh tế tri thức của thế giới . với bộ môn toán nếu “Toán học là một môn thể thao của trí tuệ” thì công việc của người dạy toán là tổ chức hoạt động trí tuệ ấy. Có lẽ không có môn học nào thuận lợi hơn môn toán trong công việc đầy hứng thú và khó khăn này.
Là một giáo viên giảng dạy môn toán hơn 9 năm và làm công tác quản lý được 2 năm tôi luôn luôn trăn trở rất nhiều về quá trình học toán và làm toán của các em học sinh, trong quá trình học toán, làm toán các em học sinh có thể gặp đây đó những bài toán mà đầu đề có “vẻ lạ”, “không bình thường”, những bài toán không thể giải bằng cách áp dụng trực tiếp các quy tắc, các phương pháp quen thuộc. Những bài toán như vậy thường được gọi là “không mẫu mực”(non standard problems) có tác dụng không nhỏ trong việc rèn luyện tư duy toán học và thường là sự thử thách đối với học sinh trong các kỳ thi học sinh giỏi, thi vào các lớp chuyên toán, thi vào đại học.Đương nhiên quen thuộc hay “không mẫu mực” chỉ là tương đối, phụ thuộc vào trình độ, kinh nghiệm của người giải toán, có bài toán là “lạ”, “không mẫu mực” đối với người này nhưng lại quen thuộc đối với người khác.
28 trang |
Chia sẻ: vietpd | Lượt xem: 2221 | Lượt tải: 2
Bạn đang xem trước 20 trang tài liệu Đề tài Vận dụng những bài toán không mẫu mực “Non standard problems” trong rèn luyện tư duy toán học, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
PHẦN A : MỞ ĐẦU
Trong thời kỳ phát triển và hội nhập, cộng với việc gia nhập tổ chức WTO đã mở cho đất nước ta rất nhiều cơ hội lớn nhưng cũng không ít những thách thức lớn. Trước một thực tại như vậy , nước ta lại phải cùng một lúc giải quyết ba nhiệm vụ : Thoát khỏi tình trạng nghèo nàn lạc hậu của nền kinh tế nông nghiệp ; đẩy mạnh công nghiệp hóa , hiện đại hóa và đồng thời tiếp cận ngay với nền kinh tế tri thức . Để làm nên sự nghiệp ấy đòi hỏi rất nhiều yếu tố tác động tới, trong đó có việc thích ứng ngay với nền kinh tế tri thức của thế giới . với bộ môn toán nếu “Toán học là một môn thể thao của trí tuệ” thì công việc của người dạy toán là tổ chức hoạt động trí tuệ ấy. Có lẽ không có môn học nào thuận lợi hơn môn toán trong công việc đầy hứng thú và khó khăn này.
Là một giáo viên giảng dạy môn toán hơn 9 năm và làm công tác quản lý được 2 năm tôi luôn luôn trăn trở rất nhiều về quá trình học toán và làm toán của các em học sinh, trong quá trình học toán, làm toán các em học sinh có thể gặp đây đó những bài toán mà đầu đề có “vẻ lạ”, “không bình thường”, những bài toán không thể giải bằng cách áp dụng trực tiếp các quy tắc, các phương pháp quen thuộc. Những bài toán như vậy thường được gọi là “không mẫu mực”(non standard problems) có tác dụng không nhỏ trong việc rèn luyện tư duy toán học và thường là sự thử thách đối với học sinh trong các kỳ thi học sinh giỏi, thi vào các lớp chuyên toán, thi vào đại học.Đương nhiên quen thuộc hay “không mẫu mực” chỉ là tương đối, phụ thuộc vào trình độ, kinh nghiệm của người giải toán, có bài toán là “lạ”, “không mẫu mực” đối với người này nhưng lại quen thuộc đối với người khác.
Để đạt được mục tiêu này tôi xin chân thành cảm ơn tập thể GV- CBCNV trường THCS Nguyễn Huệ đã tạo mọi điều kiện giúp đỡ để tôi hoàn thành SKKN.
Chân thành cảm ơn!
PHẦN B : ĐẶT VẤN ĐỀ
LÝ DO CHỌN ĐỀ TÀI :
Lý do : Năm học 2009 – 2010 với chủ đề “ Năm học đổi mới quản lý và nâng cao chất lượng dạy học”, là Phó hiệu trưởng phụ trách chuyên môn tôi nhận thấy việc đào tạo chất lượng mũi nhọn là một trong những nhiệm vụ trọng tâm hàng đầu, trong đó đầu tư tập trung cho khối 8 và 9 nhằm đào tạo và phát hiện ra những học sinh có tố chất, học sinh giỏi là rất quan trọng vì vậy tôi mạnh dạn xây dựng SKKN này với mong muốn các thầy cô đồng nghiệp trong và ngoài nhà trường cùng tham khảo .Trong quá trình học toán, làm toán các em học sinh có thể gặp những bài toán không thể giải bằng cách áp dụng trực tiếp các quy tắc, các phương pháp quen thuộc. Những bài toán như vậy thường được gọi là “không mẫu mực” (non standard problems). Những bài toán đó có tác dụng không nhỏ trong việc rèn luyện tư duy toán học và thường là sự thử thách đối với học sinh trong các kỳ thi học sinh giỏi, thi vào các lớp chuyên toán, thi vào đại học. Qua kinh nghiệm giảng dạy bồi dưỡng học sinh giỏi toán, đã tổng hợp, phân loại và hướng dẫn phương pháp giải đối với nhiều phương trình và hệ phương trình “không mẫu mực” ở các lớp 8 , 9 và các lớp đầu cấp THPT, tôi mạnh dạn xây dựng SKKN này nhằm giúp các em học sinh luyện tập để nhiều bài toán giải phương trình và hệ phương trình “không mẫu mực” dần trở thành “quen thuộc” với mình, qua đó biết cách suy nghĩ trước những phương trình và hệ phương trình “ không mẫu mực” khác.
Mục đích :Với sáng kiến kinh nghiệm này tôi muốn đưa ra những kinh nghiệm và những bài học thực tiễn qua quá trình bồi dưỡng nhiều năm học sinh giỏi, giảng dạy cho các em học sinh có tố chất và yêu thích toán học tại trường THCS Nguyễn Huệ
Tính thực tiễn, ý nghĩa : Qua nhiều năm bồi dưỡng tôi nhận thấy phương trình và hệ phương trình không mẫu mực được quan tâm và ra đề thi nhiều trong các kỳ thi học sinh giỏi các cấp vì vậy , cho đến năm học 2008 – 2009 đã thôi thúc tôi viết lên những kinh nghiệm nhỏ trong quá trình bồi dưỡng học sinh giỏi, đến nay tôi nhận thấy đề tài phần nào đã đem lại hiệu quả cao, chất lượng học sinh giỏi cấp trường, cấp huyện và học sinh giỏi toàn diện đi lên, các thầy cô cũng đã quan tâm nhiều hơn đến phương trình và hệ phương trình không mẫu mực vì vậy không gặp khó khăn trong quá trình giảng dạy học tập và bồi dưỡng học sinh giỏi.
CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN :
Cơ sở lí luận khoa học :
Trong quá trình giảng dạy toán cần thường xuyên rèn luyện cho học sinh các phẩm chất trí tuệ có ý nghĩa lớn lao đối với việc học tập, rèn luyện và tu dưỡng trong cuộc sống của học sinh. Đối với học sinh khá giỏi, việc rèn luyện cho các em tính linh hoạt, tính độc lập, tính sáng tạo, tính phê phán của trí tuệ là những điều kiện cần thiết trong việc học toán. Chính vì vậy bồi dưỡng học sinh khá giỏi không đơn thuần chỉ cung cấp cho các em một số vốn kiến thức thông qua việc làm bài tập càng nhiều, càng tốt, càng khó càng hay mà phải cần thiết rèn luyện khả năng phát triển tư duy, sáng tạo làm toán cho học sinh, đặc biệt đối với những bài toán được các em coi là “lạ”.
Cơ sở lý luận thực tiễn:
Qua nhiều năm công tác giảng dạy ở trường THCS tôi nhận thấy việc học toán nói chung và bồi dưỡng học sinh khá giỏi toán nói riêng, muốn học sinh rèn luyện được tư duy sáng tạo trong việc học và giải toán thì bản thân mỗi người thầy (cô) cần phải có nhiều phương pháp và nhiều cách hướng dẫn học sinh tiếp thu và tiếp cận bài giải. Đặc biệt qua những năm giảng dạy thực tế ở trường trung học cơ sở Nguyễn Huệ việc có được học sinh giỏi của môn Toán là một điều rất khó mà không phải giáo viên toán nào cũng có thể làm được nếu không biết đầu tư, không thực sự nhiệt tình và không nghiên cứu các chuyên đề về Phương trình và hệ phương trình không mẫu mực,hoặc các chuyên đề khác, tuy nhiên có nhiều nguyên nhân có cả khách quan và chủ quan. Song đòi hỏi người thầy cần phải tìm tòi nghiên cứu tìm ra nhiều phương pháp và cách giải qua một bài Toán để từ đó rèn luyện cho học sinh năng lực hoạt động tư duy sáng tạo, phát triển bài toán và có thể đề xuất hoặc tự làm những bài toán tương tự đã được nghiên cứu bồi dưỡng.
THỰC TRẠNG:
* Thuận lợi: Là một phó hiệu trưởng phụ trách chuyên môn có 9 năm giảng dạy và 5 năm làm tổ trưởng tổ toán, 2 năm làm quản lý .Năm học 2008 – 2009 được sự chỉ đạo, quan tâm của Ban giám hiệu nhà trường trong các hoạt động đặc biệt trong họat động chuyên môn, luôn tạo mọi điều kiện cho giáo viên phấn đấu, học tập và nghiên cứu, phát huy các phương pháp dạy học đổi mới sáng tạo nhất. Bên cạnh đó các môn học khác có học sinh giỏi huyện luôn khuyến khích các giáo viên dạy toán và học sinh phải năng động tìm tòi, tư duy sáng tạo trong việc dạy và học toán. Mặt khác trong sự nghiệp giáo dục của huyện CưMgar nói chung , và trường THCS Nguyễn Huệ nói riêng đã có nhiều thay đổi đáng kể, đã có rất nhiều học sinh giỏi cấp tỉnh, giỏi cấp huyện, do đó các cấp uỷ Đảng chính quyền, các bậc phụ huynh, đặc biệt Hội khuyến học xã đã có phần quan tâm động viên hơn đối với sự nghiệp giáo dục của xã và nhà trường.
* Khó khăn: Bên cạnh những mặt thuận lợi cũng có nhiều những khó khăn như: Điều kiện cơ sở vật chất của nhà trường thiếu thốn, không có phòng học để mở việc bồi dưỡng cho học sinh khá giỏi theo một trình tự có hệ thống từ các lớp nhỏ đến lớp lớn, cụ thể từ lớp 6 đến lớp 9. Phòng thư viện của nhà trường còn ít đầu sách, do đó việc tìm tòi sách đọc là vấn đề hạn chế. Nhưng khó khăn nhất vẫn là các em học sinh do điều kiện của địa phương với đặc thù là vùng 2 của huyện , số nhân khẩu đông, điều kiện kinh tế khó khăn,dân di cư tự do nhiều, vì vậy việc quan tâm đến học hành còn hạn chế nhiều về tinh thần và vật chất, dẫn đến hạn chế việc học hành của các em đặc biệt là môn toán.
Vì vậy để cho môn toán ngày càng được nhiều học sinh yêu thích trước hết người Thầy phải tác động như thế nào đó vào tiềm thức của các em, không những học sinh khá, giỏi mà cần phải đánh thức các em có học lực trung bình và những học sinh chưa thật sự yêu thích môn toán, để đạt được các mục tiêu này cần phải có một cú “hích” đó chính là đào tạo , phát hiện ra những học sinh giỏi nhằm khuyến khích động viên các em kịp thời , là nhân tố khơi dậy và là tấm gương sáng cho những học sinh khác noi theo.
GIẢI PHÁP THỰC HIỆN (NỘI DUNG SKKN) :
Phần I : Phương trình
I/ Phương trình một ẩn
Phương pháp thường vận dụng :
1/ Đưa về phương trình tích :
a/Các bước :
+ Tìm tập xác định của phương trình
+ Dùng các phép biến đổi đại số đưa PT về dạng f(x).g(x)....h(x)=0
+ Dùng ẩn phụ
+ Dùng cách nhóm số hạng, hoặc tách số hạng....
b/ Ví dụ1 : Giải phương trình :
ĐS : x=1; x= 2.
Ví dụ 2: Giải phương trình :
Giải : Điều kiện x - 2
Đặt : ( t0)
3- t2 = (1- t)3
t3 – 4t 2 + 3t + 2 = 0
(t-2)( t2 – 2t – 1) = 0
Đs : x= 2; x= 1+
c/ Bài toán áp dụng :
1.Giải phương trình :
a/
Đs : x= 1994.
b/ 3x+1 +2x.3x – 18x – 27 = 0 ĐS :
c/ (x2 – 4x + 1)3 = (x2 –x - 1)3 –( 3x-2)3
gợi ý : áp dụng HĐT (a - b)3 - (a3 –b3 )= -3ab( a - b)
ĐS :
d/ (x2 – 3x + 2)3 + (- x2 +x + 1)3 + ( 2x-3)3 = 0
Gợi ý : áp dụng HĐT (a - b)3 + (b - c)3 +(c - a)3 = 3(a –b )(b – c)(c- a)
Đáp số :
2/ Áp dụng bất đẳng thức :
a/ Các bước :
+ Biến đổi phương trình về dạng : f(x) = g(x) mà f(x) a ; g(x) a (a là hằng số)
Nghiệm là các giá trị x thỏa mãn đồng thời f(x) = a và g(x) = a.
+ Biến đổi phương trình về dạng h(x) = m ( m là hằng số) mà ta luôn có : h(x) m hoặc h(x) m thì nghiệm của PT là các giá trị của x làm cho dấu đẳng thức xảy ra.
+ Áp dụng BĐT : Cô si, Bunhia kốpxki, .........
b/ Ví dụ1 : Giải phương trình :
Điều kiện :
Ta có :
Nên x - 1 = 0 ; x2 – 1 = 0 và x2 – 3x + 2 = 0
Đáp số : x = 1
Ví dụ 2 : Giải phương trình :
x2 – 3x + 3,5 =
Hướng giải : ta có x2 – 2x + 2 = ( x - 1)2 + 1 > 0
x2 – 4x + 5 = ( x - 2)2 + 1 > 0
x2 – 3x + 3,5 =
Áp dụng bất đẳng thức Cô Si cho hai số dương :
(x2 – 2x + 2 ) và (x2 – 4x + 5)
Đáp số : x = 3.
c/ Bài toán áp dụng :
a/
gợi ý :
áp dụng bất đẳng thức :
dấu bằng sảy ra khi ab0 với a= ; b= 3-
b/ 13[(x2 – 3x +6)2 + (x2 -2x + 7)2] = ( 5x2 – 12x + 33)2
Gợi ý : sử dụng BĐT Bunhia cốpxki cho 4 số : (a2 + b2)(c2 + d2) (ac + bd)2
Đáp số : x = 1; 4
3/ Chứng minh nghiệm duy nhất :
a/ Các bước :
Ta có thể thử trực tiếp để thấy nghiệm sau đó chứng minh rằng ngoài nghiệm này ra không còn nghiệm nào khác nữa :
b/ Ví dụ
Ví dụ 1:Giải phương trình :
(1)
Gợi ý :
x = 2 là nghiệm số của (1)
Xét x 2, (giáo viên hướng dẫn cho học sinh xét x 2)
Đáp số : x = 2
Ví dụ 2: Giải phương trình :
Giải :
(*)
Dễ thấy : x= 2 là nghiệm của *
Xét x > 2 . Ta có
Xét x< 2 ta có :
Vậy ta có nghiệm duy nhất là 2.
c/ Bài toán áp dụng :
Giải phương trình :
1. 2x + 3x + 5x-1 = 21-x + 31-x + 51-x
2. 3x + 4x = 5x
4/ Đưa về hệ phương trình
a/ Các bước :
Tìm ĐK tồn tại của phương trình.
Biến đổi PT để xuất hiện nhân tử chung.
Đặt ẩn phụ thích hợp để đưa việc GPT về việc giải HPT quen thuộc.
b/ Ví dụ
Ví dụ 1 : Giải phương trình :
Điều kiện :
Đặy y = ta có hệ phương trình :
Đây là bài toán quen thuộc nên giải một cách dễ dàng
Lưu ý : x + y 0 (loại)
Đáp số :
Ví dụ 2 : Giải phương trình :
Giải : Điều kiện :
Đặt y = ta có hệ phương trình :
Vì x + y 0 nên ta có hệ :
Suy ra : x2 = 4 – x – 1 x2 + x – 3 = 0
Suy ra : (loại)
Đáp số :
c/ Bài toán áp dụng :
Giải phương trình :
1. 2 – x 2 =
2. x3 + 1 = 2
3.
II/ Phương trình nhiều ẩn :
1/ Đưa về phương trình tích :
a/Các bước :
Đưa phương trình về dạng f1(x,y,....).....fn(x,y......) = a1.a2.........an .
Với a1; a2;.......;an Z. rồi sử dụng tính chất của tập hợp số tự nhiên , tập hợp số nguyên ......, f1(x,y,....); f2(x,y........); ....fn(x,y......) Z
Xét mọi trường hợp có thể sảy ra để tìm được nghiệm thích hợp của phương trình.
b/ Ví dụ1 : Tìm nghiệm nguyên của phương trình :
x2 + 91 = y2 (1)
(1) y2 – x2 = 91
Vì >0; >0; Và - >0
91 = 1.91 = 13. 7
Nên ta có :
Nghiệm của phương trình là : (45;46);(45;-46); (-45;-46);
(3;10); (3;-10); (-3;10); (-3;-10)
Ví dụ 2: Tìm nhiệm tự nhiên của phương trình sau :
2m – 2n = 1984 (2) ( Đề thi HSG toán tỉnh Nghĩa Bình năm 1984)
+ Với m n thì 2m – 2n 0 thì (2) không sảy ra
+ Với n = 0 thì 2m -1 = 1984
Không có số tự nhiên nào thỏa mãn đẳng thức này.
+ Với m n 1
2m – 2n = 1984
2n( 2m-n – 1)= 26. 31
Nghiệm tự nhiên của phương trình là m=11; n = 6.
c/ Bài toán áp dụng :
Tìm nhiệm tự nhiên của phương trình sau :
1. x2 (x2 + 2y) – y2 (y + 2x) = 1991 ( Đêt thi hsg toán 9 Hà Nội 1990 – 1991).
ĐS : x = 12; y = 1.
2. x4 = y2 (y- x2)
ĐS : x= y = 0
2/ Đưa về phương trình tổng :
a/Các bước :
+ Biến đổi phương trình về dạng sau :
Dạng 1 :
Với k; a1; a2;.......;an Z.
f1(x,y,....); f2(x,y........); ....fn(x,y......) Z
Xét mọi trường hợp có thể sảy ra để tìm được nghiệm thích hợp.
Dạng 2 :
Với m, n Z cụ thể ; b>0
Vận dụng điều đã được chứng minh sau :
“ Mọi số hữu tỉ đều được biểu diễn được một cách duy nhất dưới dạng một liên phân số bậc n”
Trong đó q0 là số nguyên ; q1......nguyên dương và qn > 1
Đôi khi dùng bất đẳng thức để tìm nghiệm nguyên của phương trình.
b/ Ví dụ 1 : Tìm nghiệm nguyên của phương trình :
x2 – 4xy + 5y2 = 169 (1)
(1) (x - 2y)2 + y2 = 169
Số 169 chỉ có 2 cách phân tích thành tổng hai số chính phương :
169 = 132 + 02 = 122 + 55
Mà y Z+ ; N
Do đó có các khả năng sau :
; y= 13 suy ra x = 26 ; y= 13
; y= 12 suy ra x = 29 ; y= 12
Hoặc x= 19 ; y = 12
; y= 5 suy ra x = 22 ; y= 5
Hoặc x= -2 ; y= 5 (loại)
Thử lại ta có nghiệm nguyên dương (x;y) của phương trình là :
(26 ; 13); (29;12); (19;12); (22;5)
Ví dụ 2: Tìm nghiệm nguyên của phương trình :
x2 + 13y2 = 100 +6xy
Giải :
(x - 3y)2 + (2y)2 = 100
()2 + ()2 = 100
Mà 100 = 02 + 102 = 62 + 85
; N
Từ đó giáo viên có thể đưa ra nghiệm của pt như sau :
(15 ; 5); (-15;-5); (10; 0); (-10;0); (18 ; 4); (-18;-4); (6;4);
(-6;-4); (17 ; 3); (-17;-3); (1; 3); (-1;- 3) .
Chú ý :
1. Tìm nghiệm nguyên của một số phương trình có dạng :
ax2 + bxy + cy2 + d = 0
(a ; b;c;d là các hằng số nguyên )
Có thể giải được bằng PP trên.
Ví dụ : Tìm nghiệm nguyên của phương trình :
3x2 + 2y2 + z2 + 4xy + 2xz = 26 – 2yz
x2 +(x2+ 2xy + y2 )+ (x2+ y2 + z2 +2xy+ 2xz + 2yz) = 26
x2 +(x+y)2+ (x+y+z) 2 = 26
vì x , y, z nguyên dương nên 1 x< x + y < x + y + z
mà 26 = 12 + 32 + 42
do đó ta có :
Nghiệm nguyên dương là ( 1;2;1)
2.Nếu phương thình có dạng :
Mà a N, N
Thì ta viết a dưới dạng
mi N; i = 1,2....., n
xét các trường hợp có thể sảy ra, từ đó tìm được nghiệm thích hợp
Ví dụ : Tìm nghiệm nguyên dương của phương trình :
viết dưới dạng liên phân số hữu hạn như sau :
Do đó ta có :
Vì sự phân tích trên là duy nhất nên ta có :
x = 1 ; y = 2 ; x = 3.
c/ Bài toán áp dụng :
Tìm nghiệm tự nhiên của phương trình sau :
1, 31(xyzt+ xy + xt + zt + 1 ) = 40 ( yzt + y + t)
Đáp số nghiệm tự nhiên của phương trình là ( 1; 3 ; 2 ; 4 )
2, 55( x3y3 + x2 + y2 )= 229( xy3 + 1 )
Đáp số : (2;3)
(x2 + 4 y2 + 28 )2 = 17(x4 + y4 +14y2 +49)
Gợi ý : sử dụng Bunhia Kopski
Đáp số : (2;3).
4. Tìm các giá trị nguyên dương khác nhau x1;....xn sao cho :
Đáp số : không có giá trị nguyên nào thỏa mãn YCBT.
3/ Nhận xét về ẩn số :
a/Các bước :
Trước khi bắt tay vào giải toán, ta nên nhận xét xem vai trò của các ẩn số , cấu trúc của ẩn. Để có một cách giải phù hợp.
Nếu các ẩn (x;y;z.....) có vai trò bình đẳng như nhau, thì ta có thể giả sử xy...... hoặc xy ..........để thu hẹp miền xác định của bài toán.
Nếu ẩn có cấu trúc giống nhau, như lũy thừa cùng bậc của các số nguyên liên tiếp hoặc tích các số nguyên liên tiếp.......thì ta “khử ẩn” để đưa phương trình về dạng quen thuộc hơn hoặc ít ẩn hơn.
Thường vận dụng hai nhận xét sau :
a) xn < yn < (x + a)n ; (a Z+)
suy ra : y = (x + a+ i)n . với i = 1;2;........; a-1.
b) x(x+ 1) .....(x + n) < y (y+1)........(y+ n) < (x + a)( x+ a + 1) ....(x + a+ n)
a Z+
Suy ra : y(y +1) ....(y + n) = (x+ i)(x + i +1)..........(x + i + n) . với i = 1;...;a-1.
b/ Vd :
Ví dụ 1 : Tìm nghiệm nguyên dương của phương trình :
Giải : do vai trò bình đẳng của x , y , z nên ta có thể giả sử :
x yz.
ta có :
suy ra x = 1
hoặc y = 2
y=1 loại vì
y= 2 suy ra z = 2.
Vậy nghiệm nguyên của phương trình là : ( 1; 2 ; 2 ) và các hoán vị.
Ví dụ 2 : Tìm nghiệm tự nhiên của phương trình :
x + y + 1 = xyz
Giải : vai trò của x, y bình đẳng nên giả sử x y ta có :
+ x = y thì 2x + 1 = x2z x( xz -2 ) =1
x = 1 ; xz – 2 = 1
x = 1 ; z = 3.
+ x > y thì 2x +1 > xyz. 2x > xyz.
Hay 2 yz ( vì x khác 0)
y = 1 , z = 2 x = 2
y= 2 , z = 1 x = 3
Vậy nghiệm tự nhiên của PT là : (1;1;3 ); ( 2;1;2); ( 1;2;2); (3;2;1); (2;3;1).
c/ Bài toán áp dụng :
Tìm nghiệm tự nhiên của phương trình sau :
1.
2. 5(x + y + z +t) = 2xyzt- 10
3. y3 – x3 = 3x
4. Giải phương trình : x6 – x2 + 6 = y3 - y
4/ Vận dụng tính chất của tập hợp số nguyên :
a/Các bước :
+ Vận dụng tính chất chia hết hoặc tính chất của phép chia có dư trong tập hợp số nguyên để tìm nghiệm.
+ Vận dụng tính chất của số nguyên tố , số vô tỉ để tìm nghiệm.
+ Ví dụ : các mệnh đề đúng :
+ Mệnh đề 1 : với mọi số nguyên a, số a2 + 1 không có ước nguyên tố dạng 4k + 3; k Z+.
+ Mệnh đề 2 : cho p là một số nguyên tố dạng 4k + 3 ; k Z+ , a nà b là các số nguyên, khi đó nếu a2 + b2 chia hết cho p thì a chia hết cho p; b chia hết cho p.
b/ Ví dụ 1 : Tìm nghiệm nguyên dương của phương trình :
4xy – x – y = z2
Giải : (4x – 1) (4y – 1) = ( 2z)2 + 1
Giả sử : (xo ; yo ; zo ) là nghiệm của phương trình:
Ta có : (4xo – 1) (4yo – 1) = ( 2zo)2 + 1
Vì :
4xo – 1 là số nguyên dương lớn hơn 3 và có dạng 4m + 3 , m Z+, nên nó có ít nhất một ước nguyên tố dạng 4k + 3, k thuộc Z+
Nhưng theo mệnh đề 1 thì ( 2zo)2 + 1 không có ước nguyên tố dạng 4k + 3
Vậy phương trình không có nghiệm nguyên.
Ví dụ 2 : Chứng minh rằng phương trình sau không có nghiệm nguyên:
x3 – 63y2 + 36z = 1995
Giải : ta có x3 chia cho 9 dư 0 hoặc 1 hoặc 8.
Thật vậy đặt : x = 3a + r ( a Z; r = 0 ; 1 ; -1 )
x3 = (3a +r)3 = 9M + r3
Rõ ràng x3 có dạng 9k; 9k + 1; 9k – 1
Suy ra Vế trái của phương trình chia cho 9 có dư là 0 hoặc 1 hoặc 8
Vế phải của phương trình chia cho 9 có dư là 6
Vậy phương trình đã cho không có nghiệm nguyên.
c/ Bài toán áp dụng :
Tìm nghiệm nguyên dương của phương trình sau :
1. 4xy – y = 9x2 – 4x + 2
2. x2 – y3 = 7
3. Tìm nghiệm nguyên của phương trình :
4.Tìm tất cả các nghiệm nguyên của phương trình :
a/
b/
5/ Chứng minh bằng phản chứng :
a/Các bước :
Ta có thể dùng phương pháp phản chứng sau đây : Giả sử phương trình có nghiệm nguyên ( x0; y0; .....) rồi xây dựng dãy vô số ngiệm từ đó đi đến mâu thuẫn hoặc giả sử phương trình có nghiệm nguyên ( x0; y0; .....) với x0 có giá trị nhỏ nhất trong những giá trị có thể của nó rồi chứng minh phương trình có nghiệm ( x1; y1, .....) mà x0 > x1.
b/ Ví dụ :
Ví dụ 1 Tìm tất cả các nghiệm tự nhiên của phương trình :
x2 + (x+1 )2 = y2 + 1
Gợi ý : x2 + (x+1 )2 - y2 = 1
Ta thấy : x1 = 1; y1 = 2 là nghiệm nhỏ nhất của phương trình
Và 3x + 2 y + 1 ; 4x+ 3y + 2 cũng là nghiệm vì
(3x + 2 y + 1)2 +( 3x+ 2y + 2)2 -( 4x+ 3y + 2)2 = x2 + (x +1)2 – y2
Ví dụ 2 : Chứng minh rằng phương trình sau đây có nghiệm nguyên duy nhất x=y=0 x2 – 7y2 = 0
Giải : Giả sử phương trình có nghiệm nguyên (x0 ; y0) (0;0) mà /x0/ nhỏ nhất trong các giá trị có thể của nó.
Ta có :
Đặt x0 = 7x1 do đó , đặt y0 = 7y1 ta có :
vậy cũng là nghiệm.
Mà = , x1 là nghiệm, vô lý . Suy ra điều phải chứng minh.
c/ Bài toán