Đồ án Lựa chọn máy biến áp - Sơ đồ nối và sơ đồ nối điện chính

Điện là một trong những phát minh vĩ đại và kỳ diệu nhất trong lịch sử phát triển của con người. Nó làm thay đổi một cách nhanh chóng nền kinh tế cũng nh­ bộ mặt xã hội của mỗi quốc gia trên toàn thế giới. Điện năng là một dạng năng lượng đặc biệt được sử dụng rộng rãi nhất trong tất cả các lĩnh vực kinh tế, xã hội và đời sống của con người. Tốc độ tăng trưởng kinh tế mỗi quốc gia phụ thuộc rất nhiều vào công cuộc điện khí hoá nền công nghiệp. Xã hội càng phát triển thì nhu cầu về sử dụng điện năng ngày càng cao, vì vậy việc sản xuất, truyền tải và phân phối điện năng phải liên tục phát triển và ngày càng hoàn thiện để đáp ứng nhu cầu của cuộc sống con người. Hệ thống điện là một phần của hệ thống năng lượng. Nó bao gồm các nhà máy điện, các mạng điện để truyền tải và phân phối điện năng đến tất cả các hộ tiêu thụ điện, tạo thành một hệ thống có cấu trúc phức tạp và vận hành rất linh hoạt, ngày càng đòi hỏi ứng dụng những tiến bộ khoa học kỹ thuật để hoàn thiện việc sản xuất, truyền tải và phân phối một cách tối ưu nhất phù hợp với sự phát triển kinh tế, xã hội của mỗi quốc gia trên thế giới. Đồ án tốt nghiệp về “ Mạng lưới điện ” là một sự tập dượt lớn cho các sinh viên ngành Hệ Thống Điện trước khi bước vào thực tế công việc của ngành. Nó giúp cho sinh viên vận dụng những kiến thức đã học tập và nghiên cứu vào thực hiện một nhiệm vụ tương đối toàn diện về lĩnh vực sản xuất, truyền tải và phân phối điện năng. Ngày nay trên toàn thế giới, hệ thống điện đã phát triển theo con đường tập trung hoá sản xuất điện năng trên cơ sở những nhà máy điện lớn, hợp nhất các hệ thống năng lượng, vì vậy đòi hỏi mỗi chúng ta phải luôn luôn học hỏi, trau dồi kiến thức khoa học kỹ thuật góp phần đưa ngành hệ thống điện nước ta có thể theo kịp tốc độ phát triển năng lượng trên toàn thế giới. Qua 5 năm học tập, nghiên cứu tại trường và qua đồ án tốt nghiệp này em xin trân trọng cảm ơn các thầy cô giáo trong nhà trường, bộ môn Hệ Thống Điện và thầy giáo Ngô Hồng Quang là người trực tiếp hướng dẫn em hoàn thành đồ án tốt nghiệp này.

doc189 trang | Chia sẻ: oanhnt | Lượt xem: 4946 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Đồ án Lựa chọn máy biến áp - Sơ đồ nối và sơ đồ nối điện chính, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Lựa chọn máy biến áp - sơ đồ nối và sơ đồ nối điện chính Mục lục Lời nói đầu 3 PHẦNLLLLLLLLLLL I THIẾT KẾ MẠNG ĐIỆN KHU VỰC CHƯƠNG I: Phân tích nguồn và phụ tảiuuuullllllll 5 CHƯƠNG II: Cân bằng công suất trong hệ thống điện Mục đích 8 Cân bằng công suất tác dụng 8 III. Cân bằng công suất phản kháng 9 IV. Sơ bộ xác định phương thức vận hành cho hai nhà máy 10 CHƯƠNG III: Lựa chọn điện áp 13 CHƯƠNG IV: Dự kiến các phương án nối dây của mạng điện và so sánh các phương án về mặt kỹ thuật A. Dự kiến các phương án nối dây của mạng điện - Lựa chọn sơ bộ các phương án nối dây 15 B. Tính toán các phương án nối dây 27 1. Phương án 1 27 2. Phương án 2 35 3. Phương án 3 43 5. Phương án 4 52 4. Phương án 5 61 CHƯƠNG V: So sánh các phương án về mặt kinh tế 70 Phương án 1 71 Phương án 2 72 Phương án 5 73 CHƯƠNG VI: Lựa chọn máy biến áp - sơ đồ nối và sơ đồ nối điện chính 75 Yêu cầu chung 75 Máy biến áp của các trạm giảm áp 75 III. Máy biến áp của các trạm tăng áp 77 IV. Sơ đồ nối dây trạm biến áp của các nhà máy điện 79 V. Sơ đồ nối dây các trạm phân phối và truyền tải 79 CHƯƠNG VII: Tính toán các chế độ làm việc của mạng điện 82 I. Chế độ phụ tải cực đại 82 * Tính toán bù cưỡng bức công suất phản kháng cho hệ thống điện 92 * Tính chính xác lại chế độ phụ tải cực đại sau khi bù 96 III. Phụ tải 33 II. Chế độ phụ tải cực tiểu 106 III. Chế độ sự cố 116 CHƯƠNG VIII: Tính toán điện áp tại các điểm nút của mạng điện - chọn phương thức điều chỉnh điện áp trong mạng điện 127 Toán điện áp tại các điểm nút của mạng điện 127 I. Chế độ phụ tải cực đại 127 II. Chế độ phụ tải cực tiểu 131 III. Chế độ sự cố 134 Chọn đầu phân áp của các máy biến áp 138 Chọn đầu phân áp của các máy biến áp giảm áp 139 Chọn đầu phân áp của các máy biến áp tăng áp 151 CHƯƠNG IX Tính toán chỉ tiêu kinh tế, kỹ thuật của mạng điện 155 I. Tính tổn thất công suất và tổn thất điện năng trong toàn mạng 155 II. Tính vốn đầu tư xây dựng mạng điện 156 III. Tính giá thành tải điện 157 Bảng tổng kết các chỉ tiêu kinh tế, kỹ thuật chủ yếu 158 PHẦNLLLLLLLLLLL I THIẾT KẾ CẤP ĐIỆN CHƯƠNG I : Thiết kế trạm biến áp 159 I. Phần mở đầu 159 II. Chọn các phần tử của trạm 160 III. Tính toán nối đất cho trạm biến áp 166 CHƯƠNG I : Thiết kế đường dây trung áp 22 kV 168 I. Phân cấp đường dây, vùng khí hậu và số liệu đường dây dùng cho tính toán 168 II. Tính toán và lựa chọn các phần tử trên đường dây 169 III. Tính toán kiểm tra các phần tử đã chọn 173 Tài liệu tham khảo 180 Lời nói đầu Điện là một trong những phát minh vĩ đại và kỳ diệu nhất trong lịch sử phát triển của con người. Nó làm thay đổi một cách nhanh chóng nền kinh tế cũng nh­ bộ mặt xã hội của mỗi quốc gia trên toàn thế giới. Điện năng là một dạng năng lượng đặc biệt được sử dụng rộng rãi nhất trong tất cả các lĩnh vực kinh tế, xã hội và đời sống của con người. Tốc độ tăng trưởng kinh tế mỗi quốc gia phụ thuộc rất nhiều vào công cuộc điện khí hoá nền công nghiệp. Xã hội càng phát triển thì nhu cầu về sử dụng điện năng ngày càng cao, vì vậy việc sản xuất, truyền tải và phân phối điện năng phải liên tục phát triển và ngày càng hoàn thiện để đáp ứng nhu cầu của cuộc sống con người. Hệ thống điện là một phần của hệ thống năng lượng. Nó bao gồm các nhà máy điện, các mạng điện để truyền tải và phân phối điện năng đến tất cả các hộ tiêu thụ điện, tạo thành một hệ thống có cấu trúc phức tạp và vận hành rất linh hoạt, ngày càng đòi hỏi ứng dụng những tiến bộ khoa học kỹ thuật để hoàn thiện việc sản xuất, truyền tải và phân phối một cách tối ưu nhất phù hợp với sự phát triển kinh tế, xã hội của mỗi quốc gia trên thế giới. Đồ án tốt nghiệp về “ Mạng lưới điện ” là một sự tập dượt lớn cho các sinh viên ngành Hệ Thống Điện trước khi bước vào thực tế công việc của ngành. Nó giúp cho sinh viên vận dụng những kiến thức đã học tập và nghiên cứu vào thực hiện một nhiệm vụ tương đối toàn diện về lĩnh vực sản xuất, truyền tải và phân phối điện năng. Ngày nay trên toàn thế giới, hệ thống điện đã phát triển theo con đường tập trung hoá sản xuất điện năng trên cơ sở những nhà máy điện lớn, hợp nhất các hệ thống năng lượng, vì vậy đòi hỏi mỗi chúng ta phải luôn luôn học hỏi, trau dồi kiến thức khoa học kỹ thuật góp phần đưa ngành hệ thống điện nước ta có thể theo kịp tốc độ phát triển năng lượng trên toàn thế giới. Qua 5 năm học tập, nghiên cứu tại trường và qua đồ án tốt nghiệp này em xin trân trọng cảm ơn các thầy cô giáo trong nhà trường, bộ môn Hệ Thống Điện và thầy giáo Ngô Hồng Quang là người trực tiếp hướng dẫn em hoàn thành đồ án tốt nghiệp này. PHẦN I THIẾT KẾ MẠNG ĐIỆN KHU VỰC Chương I PHÂN TÍCH NGUỒN VÀ PHỤ TẢI I. Các số liệu về nguồn cung cấp và phụ tải: 1. Sơ đồ địa lý: Dựa vào sơ đồ phân bố giữa các phụ tải và nguồn ta xác định được khoảng cách giữa chúng nh­ hình vẽ : tỷ lệ 1 ô = 10 km 81 40 41 S6 S2 163 S1 90 60 N§I S10 S3 90 123 64 S4 76 53,8 N§II S5 90 S8 S9 S7 56 71 64 54 51 50 81 51 72 Nguồn điện: Mạng gồm hai nguồn cung cấp: Nhà máy 1: Là nhà máy nhiệt điện có các thông số. - Công suất đặt: P1 = 4x 50 = 200 MW - Hệ số công suất: cosj = 0,8 - Điện áp định mức: Uđm = 10,5 kV Nhà máy 2: Là nhà máy nhiệt điện có các thông số. - Công suất đặt: P2 = 3 x 50 = 150 MW - Hệ số công suất: cosj = 0,8 - Điện áp định mức: Uđm = 10,5 kV 3. Phụ tải: Số liệu tính toán của các phụ tải cho trong bảng 1: Các số liệu Các hộ tiêu thụ 1 2 3 4 5 6 7 8 9 10 Pmax (MW) 30 25 40 35 20 22 24 25 18 16 Pmin (MW) 15 12,5 20 17,5 10 11 12 12,5 9 8 Cos j 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,85 Qmax (MVAr) 18,6 15,9 24,8 21,7 12,4 13,63 14,87 15,5 11,16 9,92 Qmin (MVAr) 9,3 7,75 12,4 10,85 6,2 6,82 7,44 7,75 5,58 4,96 Smax (MVA) 25,5 21,25 34 29,75 17 18,7 20,4 21,25 15,3 13,6 Smin (MVA) 12,75 10,63 17 14,87 8,5 9,35 10,2 10,62 7,65 6,8 Loại hé phụ tải I I I I I I I I I I Y/c đ/c điện áp KT KT KT KT KT KT KT KT KT KT Đ/ á thứ cấp ( kV ) 10 10 10 10 10 10 10 10 10 10 - Phụ tải cực tiểu bằng 50% phụ tải cực đại - Thời gian sử dụng công suất cực đại Tmax= 4800h Phân tích nguồn và phụ tải: Từ những số liệu trên ta có thể rót ra nhưng nhận xét sau: Hệ thống điện thiết kế được cung cấp bởi 2 nhà máy nhiệt điện tổng công suất đặt Pđ = 350 MW, khoảng cách giữa 2 nhà máy là 163 km do đó có thể liên kết với nhau. Nhà máy nhiệt điện có đặc điểm là chủ động về nguồn năng lượng, xây dựng gần nơi tiêu thụ điện , vốn xây dựng rẻ, xây dựng nhanh. Nhược điểm là tiêu tốn nhiên liệu, ô nhiễm môi trường, hiệu suất thấp, vận hành kém linh hoạt. Các phụ tải có công suất khá lớn và được bố trí xung quanh 2 nguồn điện nên rất thuận lợi cho việc cung cấp điện của 2 nhà máy. Xung quanh nhà máy nhiệt điện 1 là các phụ tải 1; 2; 3;6 ; 10 với khoảng cách xa nhất là 81 km, gần nhất là 41 km. Xung quanh nhà máy nhiệt điện 2 là các phụ tải 4; 5; 7; 8; 9 với khoảng cách xa nhất là 81 km, gần nhất là 40 km. Tất cả các phụ tải 1; 2;3; 4; 5; 6; 7 ; 8; 9 ;10 là hộ loại1với chế độ điều chỉnh điện áp cho các phụ tải là khác thường Tổng công suất nguồn 1 là: 200 MW Tổng công suất các phụ tải xung quanh nguồn 1 là: 133 MW Tổng công suất nguồn 2 là: 150 MW Tổng công suất các phụ tải xung quanh nguồn 2 là: 122 MW Do khoảng cách giữa các nhà máy và giữa các phụ tải tương đối lớn nên ta dùng đường dây trên không để dẫn điện. Tất cả các hộ loại 1 là phụ tải quan trọng nếu ngừng cấp điện có thể gây ảnh hưởng xấu đến an ninh , chính trị, xã hội, gây thiệt hại lớn về kinh tế. Do vậy yêu cầu cung cấp điện phải đảm bảo tính liên tục và ở mức độ cao nên ta phải thiết kế mỗi phụ tải được cung cấp bởi đường dây lộ kép hoặc cung cấp theo mạch vòng kín. Đối với dây dẫn để đảm bảo độ bền cơ cũng nh­ yêu cầu về khả năng dẫn điện ta dùng loại dây AC để truyền tải điện. Đối với cột thì tuỳ từng vị trí mà ta dùng cột bê tông hay cột sắt. Với cột đỡ thì dùng cột bê tông, các vị trí góc, vượt sông, vượt đường quốc lộ thì ta dùng cột sắt. Về mặt bố trí dây dẫn trên cột để đảm bảo về kinh tế, kỹ thuật ta bố trí trên cùng một tuyến cột. CHƯƠNG II CÂN BẰNG CÔNG SUẤT TRONG HỆ THỐNG ĐIỆN I. Mục đích: Đặc điểm đặc biệt của ngành sản suất điện năng là điện năng do các nhà máy điện trong hệ thống sản xuất ra cân bằng với điện năng tiêu thụ của các phụ tải . Cân bằng công suất trong hệ thống điện trước hết là xem khả năng cung cấp điện và tiêu thụ trong hệ thống có cân bằng không. Sau đó sơ bộ định phương thức vận hành cho từng nhà máy điện. Trong các chế độ vận hành lúc cực đại , lúc cực tiểu hay chế độ sự cố dựa vào khả năng cấp điện của từng nguồn điện. Cân bằng công suất nhằm ổn định chế độ vận hành của hệ thống điện. Cân bằng công suất tác dụng cần thiết để giữ tần số bình thường trong hệ thống. Để giữ được điện áp bình thường ta cần phải có sự cân bằng công suất phản kháng ở hệ thống nói chung và khu vực nói riêng. Mặt khác sự thay đổi điện áp cũng ảnh hưởng đến thay đổi tần số và ngược lại. II.Cân bằng công suất tác dụng: Ta có công thức: = Trong đó: +là tổng công suất tác dụng định mức phát ra do các máy phát của các nhà máy điện trong hệ thống điện = PNĐI + PNĐII = 200 + 150 = 350 MW +là tổng công suất tác dụng cực đại của các hộ tiêu thụ m: hệ số đồng thời , lấy m = 1 + là tổng công suất yêu cầu ,kể cả tổn thất công suất +: Tổn thất công suất trên đường dây và trạm biến áp, thường lấy +: tổng công suất tác dụng tự dùng trong các nhà máy điện ,chúngtathườnglấy.Chúngtachọn . +: tổng công suất tác dụng dự trữ của toàn hệ thống. được xác định dựa vào biểu thức: = -m-- Thay số vào ta có: + Công suất phụ tải cực đại: + Tổng tổn thất công suất : + Công suất tự dùng của các nhà máy điện: = 0,08 = 21,42 MW + Công suất dự trữ : = 350 - 255 – 12,75- 21,42 = 60,83 MW >50 MW là công suất của tổ máy lớn nhất , nh­ vậy hệ thống đảm bảo đủ công suất tác dụng trong mọi chế độ vận hành của hệ thống . III. Cân bằng công suất phản kháng : Trong hệ thống điện chế độ vận hành chỉ tồn tại khi có sự cân bằng công suet phản kháng và công suất tác dụng .Để giữ cho tần số ổn định ta phảI cân bằng công suất tác dụng còn để giữ cho điện áp ổn định chúng ta phải cân bằng công suất phản kháng Ta có phương trình cân bằng công suất phản kháng: = Trong đó: m: hệ số đồng thời , m = 1 +: là tổng công suất phản kháng định mức của các nhà máy điện = tgjf +: là tổng công suất phản kháng cực đại của phụ tải +: là tổng tổn thất công suất phản kháng trên đường dây của mạng điện +: tổng công suất phản kháng do dung dẫn của đường dây cao áp sinh ra trong hệ thống điện Trong khi tính sơ bộ, với mạng điện 110 kV ta coi = +: tổng tổn thất công suất phản kháng trong MBA +: là tổng công suất phản kháng tự dùng của các nhà máy điện: =.tgjtd (chọn cosj = 0,75 thì tgjtd = 0,882) + : tổng công suất phản kháng dự trữ của toàn hệ thống.Ta có thể lấybằng công suất phản kháng của tổ máy lớn nhất trong hệ thống điện. Thay số vào ta có: + Tổng công suất phản kháng định mức: =(PNĐI + PNĐII) tgj = 350.0,75 =262,5 MVAr + Tổng công suất phản kháng cực đại của phụ tải: = (P1 + P2+ P3 + P4 +P5 +P6 + P7 +P8 + P9 +P10).0,62 = 255.0,62 = 157,85 MVAr + Tổng tổn thất công suất phản kháng trong máy biến áp: = 15%.157,85 = 23,68 MVAr + Tổng công suất phản kháng tự dùng của nhà máy điện: =.tgjtd = 21,42.0,882 = 18,89 MVAr + Tổng công suất phản kháng dự trữ của toàn hệ thống điện: =PFNĐ1.0,62 = 50.0,75 = 37,5 MVAr * Phương trình cân bằng công suất phản kháng: =237,92 - Qf = 237,92 – 262,5 = -24,58 MVAr Vậy ta có < 0 nên ta không phải tiến hành bù sơ bộ công suất phản kháng. IV.Sơ bộ xác định phương thức vận hành cho hai nhà máy 1. Khi phụ tải cực đại Nếu chưa kể đến dự trữ, tổng công suất yêu cầu của hệ thống là: 255 + 12,75 + 21,42 = 289,17 MW Để đảm bảo cân bằng công suất tác dụng trong hệ thống, ta huy động tổ máy có công suất lớn hơn trong hệ thống nhận phụ tải trước để đảm bảo tính kinh tế cao hơn. Đối với các nhà máy nhiệt điệnchúng ta cho phát đIện từ 65 đến 95% công suất đặt là kinh tế nhất ,vì ở đây cả2 nhà máy đều là các nhà máy nhiệt điện cho nên vai trò của chúng là như nhau trong hệ thống điện ,để đảm bảo tính kinh tế chúng ta cho nhà máy nhiệt điện I nhận phụ tải trước ,phần còn lại sẽ do nhà máy nhiệt điện II đảm nhận (kể cả tổn thất công suất ) Theo đầu bài chúng ta có các tổ máy của nhà máy I có công suất lớn hơn, trong chế độ phụ tải cực đại chúng ta cho nhà máy I phát 70%công suất đặt .Khi đó Công suất nhà máy I phát lên lưới là: Pvh1= Pf1 - Ptd1 =70%.Pđm1 - 8%.(70%.Pđm1) = 128,8 MW Nh­ vậy nhà máy II sẽ còn phải đảm nhận: Pf2= - Pf1 = 289,17 – 0,7.200 = 149,17 MW Trong đó lượng tự dùng là: Ptd2= Ptd - Ptd1 = 21,42 – 11,2 = 10,22 MW Pvh2 = Pf2 – Ptd2 = 149,17 – 10,22 = 138,95 MW 2. Khi phụ tải cực tiểu: Theo bài ra trong chế độ phụ tải cực tiểu Pmin = 0,5 Pmax = 0,5.255 = 127,5 MW.Nếu tất cả các tổ máy đều vận hành thì chúng sẽ làm việc trong chế độ non tải ,chế độ này không kinh tế .Để khắc phục tình trạng này chúng ta cho nhà máy I nghỉ 2 tổ máy ,các tổ máy còn lại phát vận hành 70 %công suất đặt .Khiđó công suất nhà máy I phát lên lưới PvhII = 0,7 .100 –0,08 .(0,7 .100) = 64,4W Nh­ vậy nhà máy II sẽ còn phải đảm nhận: Phần công suất phát lên lưới cho các phụ tải Pf2= - Pf1 = 127,5 – 0,7.100 = 57,5 MW Phần tổn thất công suất trên lưới =12,75.0,5 = 6,375 MW Công suất tự dùng của nhà máy I là: Ptd2= Ptd - Ptd1 = 0,5.21,42-0,7.0,8.100 = 5,11 MW Vởy công suất phát của nhà máy nhiệt điệnII là : Pf = 57,5 +6,375 + 5,11 = 70,1 MW Khi đó chúng ta cho nhà máy II nghỉ 1 tổ máy ,2 tổ còn lại phát 75%công suất đặt 3. Trường hợp sự cố: Ta xét trường hợp sự cố một tổ máy bên nhà máy II trong khi phụ tải cực đại.Nhà máy điện II còn lại 2 tổ máy phát 100% công suất đặt của tổ máy khi đó công suất nhà máy I phát lên lưới là: PvhI= 200 – 0,08.200 = 184 MW Phần công suất còn lại nhà máy II đảm nhận : Phần công suất phát lên lưới cho các phụ tải là: PfIIsc = 289,17 – 200 = 89,17 MW Phần tổn thất công suất trên lưới = 12,75 MW Công suất tự dùng của nhà máy II Ptd2= Ptd - Ptd1 = 21,42- 0,08.200 = 5,42 MW Vậy công suất của nhà máy I là:PvhIIsc = 89,17 - 5, 42 = 83,75 MW Khi đó nhà máy II phát 92,75% công suất đặt Nh­ vậy trong trường hợp sự cố nguy hiểm nhất hai nhà máy vẫn đảm bảo cung cấp đủ công suất yêu cầu của hệ thống. * Bảng tổng kết: Phụ tải Nhà máy Max Min Sự cố số tổ máyVH Pf (MW) số tổ máyVH Pf (MW) số tổ máyVH Pf (MW) I 4x50 70%(200) =140 2x50 70%(100) =70 3x50 100% (150) =150 II 3x50 98%(150) =149,17 2x50 70% (100) =70 3x50 92,7%( 150) =139,05 Theo đầu bài ta có các phụ tải tập trung xung quanh hai nhà máy và có công suất gần bằng nhau , vì thế dựa vào bảng trên ta có thể xác định ngay được công suất truyền tải lớn nhất trên đường dây liên lạc giữa hai nhà máy một cách gần đúng là : - Khi bình thường , công suất truyền theo hướng từ NM I sang NM II ở chế độ phụ tải cực đại là : PLL = Pf1 - (Ppt1 + Ppt2 + Ppt6 +Ppt10) - (DPmđ1+ DPm®2 + DPmđ6 + Ppt10) - Ptd1 = = 140 - 93 – 4,65 – 11,2 = 31,15 MW Nh­ vậy lượng công suất từ nhà máy 2 cung cấp cho phụ tải 3 là : P= 40 -31,15 = 8,85MW - Khi sự cố một tổ máy của nhà máy I , công suất truyền theo hướng từ NM I sang NM II là : PLL = Pf1 - (Ppt1 + Ppt2 + Ppt6 + Ppt10) - (DPmđ1 + DPmđ2 + DPmđ6 + DPmđ10 ) - Ptd1 = 200 -93 – 4,65 - 11,2 = 91,15 MW Chương III LỰA CHỌN ĐIỆN ÁP I. Nguyên tắc chung Lựa chọn cấp điện áp vận hành cho mạng điện là một nhiệm vụ rất quan trọng , bởi vì trị số điện áp ảnh hưởng trực tiếp đến các chỉ tiêu kinh tế, kĩ thuật của mạng điện. Để chọn được cấp điện áp hợp lý phải thoả mãn các yêu cầu sau : - Phải đáp ứng được yêu cầu mở rộng phụ tải sau này. - Cấp điện áp phải phù hợp với tình hình lưới điện hiện tại và phù hợp với tình hình lưới điện quốc gia. - Bảo đảm tổn thất điện áp từ nguồn đến phụ tải trong qui phạm Từ công thức ta thấy điện áp càng cao thì DU càng nhỏ , truyền tải được công suất càng lớn. - Tổn thất công suất: Khi điện áp càng cao thì tổn hao công suất càng bé, sử dụng Ýt kim loại màu ( do I nhá ) . Tuy nhiên lúc điện áp tăng cao thì chi phí cho xây dựng mạng điện càng lớn và giá thành của thiết bị bị tăng cao. II. Tính toán cấp điện áp của mạng điện: Việc lựa chọn cấp điện áp của mạng điện chủ yếu dựa vào kinh nghiệm tổng kết. Theo công thức kinh nghiệm: kV Ui : điện áp đường dây thứ i (kV) li : chiều dài đường dây thứ i (km) Pi : công suất tác dụng truyền tải trên đường dây thứ i (MW) Để đơn giản ta chỉ chọn phương án hình tia như sau: 81 40 41 6 2 1 N§I 10 3 90 164 4 76 N§II 5 8 9 7 71 64 51 81 72 ` Ta có: kV kV kV kV kV kV kV kV kV kV kV Dựa vào kết quả tính toán theo công thức , chọn cấp điện áp cho mạng lưới điện thiết kế là 110 kV. Chương IV CÁC PHƯƠNG ÁN NỐI DÂY CỦA MẠNG ĐIỆN SO SÁNH CÁC PHƯƠNG ÁN VỀ MẶT KỸ THUẬT A. Dự kiến các phương án nối dây của mạng điện - lựa chọn sơ bộ các phương án nối dây : Những yêu cầu chính đối với mạng điện: 1- Cung cấp điện liên tục 2- Đảm bảo chất lượng điện năng 3- Đảm bảo tính linh hoạt cao 4- Đảm bảo an toàn cho người và các công trình lân cận Lựa chọn dây dẫn: 1- Dây đồng: Dây đồng là dây dẫn được chế tạo bằng kim loại đồng, là vật liệu dẫn điện tốt . Đồng có điện trở suất nhỏ, có ứng suất kéo dây đồng phụ thuộc vào quá trình công nghệ chế tạo và có thể đạt được ứng suất cao, ngoài ra đồng có bề mặt được bao bọc bởi một lớp oxyt đồng, do đó dây đồng có khả năng chống ăn mòn tốt. Nhưng đồng là kim loại đắt tiền. Vì vậy dây đồng chỉ dùng trong các mạng điện đặc biệt. 2- Dây nhôm: được chế tạo bằng nhôm là kim loại phổ biến trong thiên nhiên. Điện trở suất lớn hơn của đồng khoảng 1,6 lần nhưng giá thành rẻ hơn , nhôm cũng có lớp oxyt nhôm bên ngoài nên cũng có tác dụng chống ăn mòn trong khí quyển. Nhược điểm chủ yếu của dây nhôm là độ bền cơ tương đối nhỏ. Do đó người ta không sản xuất dây nhôm trần một sợi. Dây nhôm nhiều sợi được dùng cho các mạng phân phối điện áp đến 35 kV. 3- Dây nhôm lõi thép: là dây nhôm có lõi là dây thép để khắc phục nhược điểm về độ bền cơ của dây nhôm và đây là dây dẫn được sử dụng phổ biến nhất ở các đường dây trên không điện áp từ 35kV trở lên. III)Phân vùng cấp điện Từ sơ đồ địa lý ở phần trên ta có thể phân ra là hai vùng cấp điện cho các phụ tải lân cận hai nhà máy điện. Vùng xung quanh nhà máy I, gồm các phụ tải 1,2,3 ,6,10 Vùng xung quanh nhà máy II, gồm các phụ tảI 4, 5, 7 , 8 và9 Hai nhà máy được nối liên lạc trực tiếp với nhau hoặc nối qua phụ tải 3. Trong lựa chọn sơ bộ các phương án ta sử dụng phương pháp mô men phụ tải. Nếu phương án nào có tổng mô men phụ tải SPL nhỏ là phương án nối dây tối ưu hơn . Với mỗi phương án ta có : PL = S Pi.Li Căn cứ vào bản đồ địa lý phân vùng phụ tải và nhà máy điện. Dựa vào yêu cầu của loại phụ tải ta có thể đề ra 10 phương án nối dây nh­ sau : Các phương án nối dây: 1. Phương án I: 81 40 41 6 2 1 N§I 10 3 90 64 4 76 N§II 5 8 9 7 71 64 51 81 72 Nh­ phần cân bằng công suất ta đã có ở chế độ phụ tải cực đại công suất truyền tải từ NĐI sang NĐII là PLL = 31,15 MW Þ PNDII-3 = 40 -31,15 =8,15MW. Tính tổng mô men phụ tải : SPL = P1L1 + P2L2 + P3L3 + P4L4 + P5L5 + P6L6 + P7L7 + P8L8 + PI-IILI-II = 41.64.25 + 90.15,07 + 76.55,07 + 81.16 + 51.22 + 81.20 + 64.24 +71.18 + 40.25 + 72.35 = 16365,9 (MW.km) Tuyến L(km) P (MW) P x L NĐI - 1 41 30 1230 NĐI - 2 64 25 1600 NĐI - 3 76 31,15 2367,4 NĐII- 4 72 35 2520 NĐII - 5 81 20 1620 NĐI - 6 51 22 1122 NĐII - 7 64 24 1536 NĐII – 8 40 25 1000 NĐII – 9 71 18 1278 NĐI - 10 81 16 1296 NĐII-3 90 8,85 1796,5 Tổng (S P.L) 16365,9 2. Phương án II: 81 40
Tài liệu liên quan