Đồ án Ứng dụng các dsp khả trình trong 3G

Thông tin di động ngày nay đã trở thành một ngành công nghiệp viễn thông phát triển nhanh và mang lại nhiều lợi nhuận nhất cho các nhà khai thác. Sự phát triển của thị trường viễn thông di động đã thúc đẩy mạnh mẽ việc nghiên cứu và triển khai các hệ thống thông tin di động mới trong tương lai. Hệ thống di động thế hệ hai, với GSM và CDMA là những ví dụ điển hình đã phát triển mạnh mẽ ở nhiều quốc gia. Tuy nhiên, thị trường viễn thông càng mở rộng càng thể hiện rõ những hạn chế về dung lượng và băng thông của các hệ thống thông tin di động thế hệ hai. Sự ra đời của hệ thống di động thế hệ ba là một tất yếu, theo hướng cung cấp các dịch vụ đa phương tiện nhằm đáp ứng nhu cầu ngày càng tăng và đa dạng của người sử dụng. Đồ án “Ứng dụng các DSP khả trình trong 3G” trình bày những ứng dụng của các DSP khả trình trong việc thiết kế các thành phần căn bản của hệ thống 3G. Sự hỗ trợ của các DSP khả trình đối với việc tăng khả năng xử lý, tốc độ xử lý, dung lượng hệ thống, hiệu suất làm việc của hệ thống 3G. Qua đó thấy được ứng dụng và tầm quan trọng của các DSP khả trình trong việc thiết kế hệ thống thông tin di động. Bố cục của đồ án gồm 4 chương:  Chương 1: Tổng quan về hệ thống thông tin di động 3G.  Chương 2: Các DSP khả trình trong các máy cầm tay hai chế độ (2G và 3 G).  Chương 3: Các DSP khả trình trong các modem trạm gốc 3G.  Chương 4: Sử dụng DSP khả trình trong xử lý dàn anten. DSP được sử dụng rộng rãi trong rất nhiều lĩnh vực của khoa học, công nghệ điện tử, tin học và đời sống. Ứng dụng của DSP trong hệ thống thông tin di động thì không phải là mới mẻ, nhưng việc tìm hiểu về ứng dụng của các DSP khả trình trong 3G là vấn đề khá mới ở Việt Nam, đòi hỏi phải có kiến thức sâu rộng về hệ thống 3G và xử lý tín hiệu số. Vì vậy trong khuôn khổ đồ án chắc chắn không tránh khỏi những sai sót cũng như còn nhiều vấn đề chưa được giải quyết thoả đáng. Em rất mong nhận được sự chỉ bảo của các thầy cô giáo, sự góp ý và phê bình của các bạn. Trong thời gian thực tập và hoàn thành đồ án em đã nhận được sự giúp đỡ tận tình của thầy giáo TS. Nguyễn Phạm Anh Dũng, sự chỉ bảo ân cần của các thầy cô giáo trong khoa Viễn thông. Em xin chân thành cảm ơn!

doc97 trang | Chia sẻ: oanhnt | Lượt xem: 1338 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Đồ án Ứng dụng các dsp khả trình trong 3G, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
MỤC LỤC DANH MỤC HÌNH VẼ i THUẬT NGỮ VIẾT TẮT 3GPP 3G Partnership Project Dự án hợp tác 3G A ACS Add, Compare and Select Cộng, so sánh và lựa chọn AFC Automatic Frequency Control Điều khiển tần số tự động AGC Automatic Gain Control Điều khiển độ lợi tự động API Application Programming Interface Giao diện lập trình ứng dụng ARIB Association Industry and Business Liên hiệp kinh doanh và công nghiệp Nhật Bản ASIC Application Specific Integrated Circuits Mạch tích hợp ứng dụng đặc trưng ATM Asynchronous Transfer Mode Chế độ truyền tải không đồng bộ AWGN Additive White Gaussian Noise Tạp âm Gaussơ trắng cộng B BLAST Bell-labs-LAyered-Space-Time Các thí nghiệm Bell phân lớp không gian - thời gian BOM Bill of Materials Chi phí vật liệu BOPS Billions of Operations Per Second Hàng tỷ thao tác trên một giây BPSK Binary Phase Shift Keying Điều chế khóa chuyển pha cơ số hai BTS Base Transcerver Station Trạm thu phát gốc C CCP Correlator Coprocessor Bộ đồng xử lý tương quan CCTrCH Coded Composite Transport Channel Kênh truyền tải đa hợp được mã hóa CDMA Code Division Multiple Access Đa truy nhập phân chia theo mã CM Constant Modulus Modul không đổi CMOE Constrained Minimum Output Energy Năng lượng đầu ra cực tiểu ràng buộc CODEC Coder and Decoder Bộ mã hóa và giải mã CR Chip-rate Tốc độ chip CRC Cyclic Redundancy Code Mã dư vòng CSB Combined Symbol Buffer Bộ đệm ký hiệu kết hợp D DBB Digital Base Band Băng tần gốc số DCT Discrete Cosine Tranform Biến đổi cosin rời rạc DLL Delay Lock Loop Lặp khóa trễ DMA Direct Memory Access Truy nhập bộ nhớ trực tiếp DMT Discrete Multitone Modulation Điều chế đa tần rời rạc DPE Delay Profile Estimation Ước tính hiện trạng trễ DS-CDMA Direct Sequence CDMA CDMA chuỗi trực tiếp DSP Digital Signal Processor Bộ xử lý tín hiệu số E EDMA Enhance DMA DMA tăng cường EOL Early/On Time/Late Sớm/đúng lúc/muộn ETSI European Telecommunications Standards Institute Viện tiêu chuẩn viễn thông Châu Âu F FCC Federal Communication Comission Ủy ban thông tin liên bang FCP Flexible Coprocessor Bộ đồng xử lý mềm dẻo FDD Frequency Division Duplex Ghép song công phân chia theo tần số FDD-DS Frequency Division Duplex-Direct Sequence Ghép song công phân chia theo tân số- chuỗi trực tiếp FDMA Frequency Division Multiple Access Đa truy nhập phân chia theo tần số FEC Forward Error Correction Hiệu chỉnh lỗi trước FHT Fast Hadamard Transformation Biến đổi Hadamard nhanh FM Frequency Modulation Điều chế tần số FSK Frequency Shift Keying Điều chế khóa chuyển tần G GOPS GPRS General Packet Radio Service Dịch vụ vô tuyến gói chung GSM Global System for Mobile Communication Hệ thống truyền thông di động toàn cầu H HW HardWare Phần cứng I IF Intermediate Frequency Tần số trung gian IMT International Mobile Telecommunications Thông tin di động quốc tế ITU International Telecommunication Union Ủy ban viễn thông quốc tế L LCC Loosely Coupled Coprocessor Bộ đồng xử lý ghép lỏng LMMSE Linear Minimum Mean Squared Error Lỗi trung bình bình phương cực tiểu tuyến tính LMS Least Mean Squares M MAC Medium Access Layer Lớp truy nhập môi trường MAP Maximum A Posteriori MGSO Modified Gram-Schmidt Orthogonalization Trực giao hóa Gram-Schmidt thay đổi MIMO Multiple Input Multiple Output Đa đầu vào đa đầu ra MIPS Million Instructions Per Second Triệu lệnh trên giây MMU Memory Management Unit Khối quản lý bộ nhớ MRC Maximal Ratio Combining Tổ hợp tỷ số tối đa MS Mobile Station Trạm di động MSE Mean Square Error Lỗi trung bình bình phương MSK Minimum Shift Keying Điều chế dịch pha cực tiểu N NMSE Normalized Mean Square Error Lỗi trung bình bình phương chuẩn hóa O OEM OFDM Orthogonal Frequency Division Multiplexing Ghép kênh phân chia theo tần số trực giao P PIC Parallel Interference Cancellation Khử nhiễu song song PLMN Public Land Mobile Network Mạng di động mặt đất công cộng PN Pseudo Noise Giả tạp âm PSK Phase Shift Keying Điều chế khóa dịch pha Q QAM Quadrature Amplitude Modulation Điều chế biên độ vuông góc QR R RACH Random Access Channel Kênh truy nhập ngẫu nhiên RAKE Bộ phân tập RAKE RC Radio Configuration Cấu hình vô tuyến RF Radio Frequency Tần số vô tuyến RMS Recursive Least Squares Bình phương đệ quy nhỏ nhất RRC Radio Resource Controller Bộ điều khiển tài nguyên vô tuyến RSCC Recursive Systematic Convolution Coder Bộ mã hóa xoắn hệ thống đệ quy S SCORE Self-Coherence Restoral SIC Successive Interference Cancellation Khử nhiễu liên tiếp SINR Signal-to-Interference Noise Power Ratio Tỷ số tín hiệu trên tạp âm, nhiễu SISO Single Input Single Output Một đầu vào một đầu ra SNR Signal to Noise Ratio Tỷ số tín hiệu trên tạp âm SOI Signal Of Interest Tín hiệu quan tâm SR Symbol-rate Tốc độ ký hiệu SVD Singular Value Decomposition Phân tích giá trị duy nhất SW SoftWare Phần mềm T TCC Tightly Coupled Coprocessor Bộ đồng xử lý ghép chặt TDD Time Division Duplex Bộ ghép song công phân chia theo thời gian TDMA Time Division Multiple Access Đa truy nhập phân chia theo thời gian TI Texas Instruments Dụng cụ Texas U UMTS Universal Mobile Telecommunication System Hệ thống viễn thông di động toàn cầu UTRA Universal Terrestrial Radio Access Truy nhập vô tuyến mặt đất toàn cầu UTRAN UMTS Terrestrial Radio Access Network Mạng truy nhập vô tuyến mặt đất UMTS V VCP Viterbi Coprocessor Bộ đồng xử lý Viterbi VLD Variable Length Decoding Giải mã chiều dài biến đổi W WCDMA Wideband Code Division Multiple Access Đa truy nhập phân chia theo mã băng rộng WMSA Weighted Multi-Slot Average Trung bình đa khe theo trọng số LỜI NÓI ĐẦU Thông tin di động ngày nay đã trở thành một ngành công nghiệp viễn thông phát triển nhanh và mang lại nhiều lợi nhuận nhất cho các nhà khai thác. Sự phát triển của thị trường viễn thông di động đã thúc đẩy mạnh mẽ việc nghiên cứu và triển khai các hệ thống thông tin di động mới trong tương lai. Hệ thống di động thế hệ hai, với GSM và CDMA là những ví dụ điển hình đã phát triển mạnh mẽ ở nhiều quốc gia. Tuy nhiên, thị trường viễn thông càng mở rộng càng thể hiện rõ những hạn chế về dung lượng và băng thông của các hệ thống thông tin di động thế hệ hai. Sự ra đời của hệ thống di động thế hệ ba là một tất yếu, theo hướng cung cấp các dịch vụ đa phương tiện nhằm đáp ứng nhu cầu ngày càng tăng và đa dạng của người sử dụng. Đồ án “Ứng dụng các DSP khả trình trong 3G” trình bày những ứng dụng của các DSP khả trình trong việc thiết kế các thành phần căn bản của hệ thống 3G. Sự hỗ trợ của các DSP khả trình đối với việc tăng khả năng xử lý, tốc độ xử lý, dung lượng hệ thống, hiệu suất làm việc của hệ thống 3G. Qua đó thấy được ứng dụng và tầm quan trọng của các DSP khả trình trong việc thiết kế hệ thống thông tin di động. Bố cục của đồ án gồm 4 chương: Chương 1: Tổng quan về hệ thống thông tin di động 3G. Chương 2: Các DSP khả trình trong các máy cầm tay hai chế độ (2G và 3 G). Chương 3: Các DSP khả trình trong các modem trạm gốc 3G. Chương 4: Sử dụng DSP khả trình trong xử lý dàn anten. DSP được sử dụng rộng rãi trong rất nhiều lĩnh vực của khoa học, công nghệ điện tử, tin học và đời sống. Ứng dụng của DSP trong hệ thống thông tin di động thì không phải là mới mẻ, nhưng việc tìm hiểu về ứng dụng của các DSP khả trình trong 3G là vấn đề khá mới ở Việt Nam, đòi hỏi phải có kiến thức sâu rộng về hệ thống 3G và xử lý tín hiệu số. Vì vậy trong khuôn khổ đồ án chắc chắn không tránh khỏi những sai sót cũng như còn nhiều vấn đề chưa được giải quyết thoả đáng. Em rất mong nhận được sự chỉ bảo của các thầy cô giáo, sự góp ý và phê bình của các bạn. Trong thời gian thực tập và hoàn thành đồ án em đã nhận được sự giúp đỡ tận tình của thầy giáo TS. Nguyễn Phạm Anh Dũng, sự chỉ bảo ân cần của các thầy cô giáo trong khoa Viễn thông. Em xin chân thành cảm ơn! Hà Nội ngày 20/10/2005 Sinh viên Nguyễn Trung Hiếu CHƯƠNG 1: TỔNG QUAN VỀ THÔNG TIN DI ĐỘNG 3G 1.1 Giới thiệu Thông tin di động bắt đầu từ những năm 1920, khi các cơ quan an ninh ở Mỹ bắt đầu sử dụng điện thoại vô tuyến, dù chỉ là ở các căn cứ thí nghiệm. Công nghệ vào thời điểm đó đã có những thành công nhất định trên các chuyến tàu hàng hải, nhưng nó vẫn chưa thực sự thích hợp cho thông tin trên bộ. Các thiết bị còn khá cồng kềnh và công nghệ vô tuyến vẫn còn gặp khó khăn trước những toà nhà lớn ở thành phố. Vào năm 1930 đã có một bước tiến xa hơn với sự phát triển của điều chế FM, được sử dụng ở chiến trường trong suốt thế chiến thứ hai. Sự phát triển này kéo dài đến cả thời bình, và các dịch vụ di động bắt đầu xuất hiện vào những năm 1940 ở một số thành phố lớn. Tuy vậy, dung lượng của các hệ thống đó rất hạn chế, và phải mất nhiều năm thông tin di động mới trở thành một sản phẩm thương mại. Hình 1.1 trình bày tóm tắt lộ trình phát triển các thế hệ thông tin di động từ 1G đến 3G. Để tiến tới thế hệ ba, thế hệ hai phải trải qua một giai đoạn trung gian, giai đoạn này được gọi là 2,5G. Hình 1.1: Lộ trình phát triển các thế hệ thông tin di động Bảng 1.3: Một số nét chính của nền tảng công nghệ thông tin di động từ thế hệ một đến thế hệ ba. Thế hệ thông tin di động Hệ thống Dịch vụ chung Chú thích Thế hệ 1 (1G) AMPS, TACS, NMT Tiếng thoại FDMA, tương tự Thế hệ 2 (2G) GSM, IS-136, IS-95 Chủ yếu cho thoại kết hợp với dịch vụ bản tin ngắn TDMA hoặc CDMA, số, băng hẹp (8-13Kbit/s) Thế hệ trung gian (2,5G) GPRS, EDGE, cdma200-1x Trước hết là tiếng thoại có đưa thêm các dịch vụ số liệu gói TDMA (kết hợp nhiều khe hoặc nhiều tần số), CDMA, sử dụng chồng lên phổ tần của thế hệ hai nếu không sử dụng phổ tần mới, tăng cường truyền số liệu gói cho thế hệ hai Thế hệ 3 (3G) Cdma2000, W-CDMA Các dịch vụ tiếng và số liệu gói được thiết kế để truyền tiếng và số liệu đa phương tiện là nền tảng thực sự của thế hệ ba. CDMA, CDMA kết hợp TDMA, băng rộng (tới 2 Mbit/s), sử dụng chồng lấn lên thế hệ hai hiện có nếu không sử dụng phổ tần mới 1.2 Các mô hình kiến trúc của các hệ thống thông tin di động 3G 1.2.1 Kiến trúc chung mạng thông tin di động 3G Mạng thông tin di động 3G lúc đầu sẽ là mạng kết hợp giữa các vùng chuyển mạch gói (PS) và chuyển mạch kênh (CS) để truyền số liệu gói và tiếng. Các trung tâm chuyển mạch gói sẽ là các chuyển mạch sử dụng công nghệ ATM. Trên đường phát triển đến mạng toàn IP, chuyển mạch kênh sẽ dần được thay thế bằng chuyển mạch gói. Các dịch vụ kể cả số liệu lẫn thời gian thực (như tiếng và video) cuối cùng sẽ được truyền trên cùng một môi trường IP bằng các chuyển mạch gói. Hình 1.2 cho thấy ví dụ về một kiến trúc tổng quát của thông tin di động 3G kết hợp cả CS và PS trong mạng lõi. Hình 1.2: Kiến trúc tổng quát của một mạng di động kết hợp cả CS và PS 1.2.2 Kiến trúc mạng thông tin di động 3G phát hành 3 Hình 1.3 cho thấy cấu trúc mạng cơ sở W-CDMA trong 3GPP phát hành 1999 (Tập tiêu chuẩn đầu tiên cho UMTS ). Hình 1.3: Kiến trúc mạng trong 3GPP phát hành 1999 Mạng lõi gồm các trung tâm chuyển mạch di dộng MSC và các nút hỗ trợ chuyển mạch gói phục vụ SGSN. Các kênh thoại và số liệu chuyển mạch gói được kết nối với các mạng ngoài qua trung tâm chuyển mạch kênh và nút chuyển mạch gói cổng GMSC và GGSN. Để kết nối trung tâm chuyển mạch kênh với mạng ngoài cần có thêm phần tử làm chức năng tương tác mạng IWF. Ngoài các trung tâm chuyển mạch kênh và các nút chuyển mạch gói, mạng lõi còn chứa các cơ sở dữ liệu cần thiết cho các mạng di động như HLR, AUC, EIR. Mạng truy nhập vô tuyến chứa các phần tử sau: RNC: Radio Network Controller, bộ điều khiển mạng vô tuyến đóng vai trò như BSC ở các mạng thông tin di dộng. Nút B đóng vai trò như các BTS ở các mạng thông tin di động. UE: User Equipment, thiết bị người sử dụng. UE bao gồm thiết bị di động ME và modun nhận dạng thuê bao UMTS (USIM). USIM là vi mạch chứa một số thông tin liên quan đến thuê bao cùng với khoá bảo an (giống SIM ở GSM). Giao diện giữa UE và mạng được gọi là Uu. Trong các quy định của 3 GPP, trạm gốc được gọi là nút B. Nút B được nối đến một bộ điều khiển mạng vô tuyến RNC. RNC điều khiển các tài nguyên vô tuyến của các nút B được nối với nó. RNC đóng vai trò giống như BSC ở GSM. RNC kết hợp với các nút B nối với nó được gọi là hệ thống con mạng vô tuyến RNS. Giao diện giữa nút B và RNC gọi là giao diện Iub. Khác với giao diện Abis tương đương ở GSM, giao diện Iub được tiêu chuẩn hoá hoàn toàn và để mở, vì thế có thể kết nối nút B của một nhà sản xuất này với RNC của nhà sản xuất khác. Khác với ở GSM, các BSC trong mạng W-CDMA không nối với nhau, trong mạng truy nhập vô tuyến của UMTS (UTRAN) có cả giao diện giữa các RNC. Giao diện này được gọi là Iur có tác dụng hỗ trợ tính di động giữa các RNC và chuyển giao giữa các nút B nối đến các RNC khác nhau. Báo hiệu Iur hỗ trợ chuyển giao. UTRAN được nối đến mạng lõi qua giao diện Iu. Giao diện Iu có hai phần tử khác nhau: Iu-CS và Iu-PS. Kết nối UTRAN đến phần chuyển mạch kênh được thực hiện qua giao diện Iu-CS, giao diện này nối RNC đến một MSC/VLR. Kết nối UTRAN đến phần chuyển mạch gói được thực hiện qua giao diện Iu-PS, giao diện nay nối RNC đến một SGSN. Từ hình 1.3 ta thấy rằng tất cả các giao diện ở UTRAN của 3GPPP phát hành 1999 đều được xây dựng trên cơ sở ATM. ATM được chọn vì nó có khả năng hỗ trợ nhiều loại dịch vụ khác nhau (như tốc độ bít khả biến cho các dịch vụ trên cơ sở gói và tốc độ bít không đổi cho các dịch vụ chuyển mạch kênh). Mặt khác mạng lõi sử dụng cùng một kiến trúc cơ sở như kiến trúc của GSM/GPRS, nhờ vậy công nghệ mạng lõi có thể hỗ trợ công nghệ truy nhập vô tuyến mới. Chẳng hạn nâng cấp mạng lõi hiện có để hỗ trợ UTRAN sao cho một MSC có thể nối đến cả UTRAN RNC và GSM BSC. Trong thực tế các tiêu chuẩn UMTS cho phép hỗ trợ chuyển giao cứng từ UMTS đến GSM và ngược lại. Đây là một yêu cầu rất quan trọng vì cần có thời gian để triển khai rộng khắp UMTS nên sẽ có khoảng trống trong vùng phủ của GSM. Nếu UTRAN và GSM BSS được nối đến các MSC khác nhau, chuyển giao giữa các hệ thống đạt được bằng cách chuyển giao giữa các MSC. Nếu giả thiết rằng nhiều chức năng của MSC/VLR giống nhau đối với UMTS và GSM, MSC cần phải có khẳ năng hỗ trợ đồng thời cả hai kiểu dịch vụ. Tương tự hoàn toàn hợp lý khi giả thiết rằng SGSN phải có khả năng hỗ trợ đồng thời kết nối Iu-PS đến RNC và Gb đến GPRS BSC. Trong hầu hết sản phẩm của các nhà sản xuất, nhiều phần tử mạng đang được nâng cấp để hỗ trợ đồng thời GSM/GPRS và UMTS. Các phần tử mạng này bao gồm MSC/VLR, HLR, SGSN và GGSN. Đối với nhiều nhà sản xuất, các trạm gốc được triển khai cho GSM/GPRS đã được thiết kế để có thể nâng cấp chúng hỗ trợ cho cả GSM và UMTS. Đối với mốt số nhà sản xuất BSC được nâng cấp để hoạt động như cả GSM BSC và UMTS RNC. Tuy nhiên cấu hình này rất hiếm. Yêu cầu các giao diện và các chức năng khác nhau (như chuyển giao mềm) của UMTS RNC chứng tỏ rằng công nghệ của nó hoàn toàn khác với GSM BSC. Vì thế thông thường ta thấy các UMTS RNC và GSM BSC tách biệt. 1.2.3 Kiến trúc mạng thông tin di động 3G phát hành 5 Sau kiến trúc 3GPP phát hành 1999 là 3GPP phát hành 4. Sự khác nhau cơ bản giữa phát hành 1999 và phát hành 4 là ở chỗ khi này mạng lõi là mạng phân bố. Thay cho việc có các MSC chuyển mạch kênh truyền thống như ở kiến trúc trước, kiến trúc chuyển mạch phân bố được đưa vào. Bước phát triển tiếp theo của UMTS là kiến trúc mạng đa phương tiện IP phát hành 5 (hình 1.4). Hình 1.4: Kiến trúc mạng đa phương tiện IP của 3GPP Bước phát triển này thể hiện sự thay đổi toàn bộ mô hình cuộc gọi. Ở đây cả tiếng và số liệu được xử lý giống nhau trên toàn bộ đường truyền từ đầu cuối của người sử dụng đến nơi nhận cuối cùng. Có thể coi kiến trúc này là sự hội tụ toàn diện của tiếng và số liệu. Từ hình 1.4 ta thấy tiếng và số liệu không cần các giao diện cách biệt, chỉ có một giao diện Iu duy nhất mang tất cả phương tiện. Trong mạng lõi giao diện này kết cuối tại SGSN và không có MWG riêng. Ta cũng thấy một số phần tử mạng mới như: Chức năng điều khiển trạng thái cuộc gọi CSCF Chức năng tài nguyên đa phương tiện MRF Chức năng điều khiển cổng các phương tiện MGCF Cổng báo hiệu truyền tải T-SGW Cổng báo hiệu chyển mạng R-SGW Một đặc điểm quan trọng của kiến trúc toàn IP là thiết bị của người sử dụng được tăng cường rất nhiều. Nhiều phần mềm được cài đặt ở UE. Trong thực tế, UE hỗ trợ giao thức khởi đầu phiên (SIP: Session Initiation Protocol). UE trở thành một tác nhân của người sử dụng SIP. Như vậy, UE có khả năng điều khiển các dịch vụ lớn hơn trước rất nhiều. CSCF quản lý việc thiết lập, duy trì và giải phóng các phiên đa phương tiện đến và từ người sử dụng. Nó bao gồm các chức năng như: biên dịch và định tuyến. CSCF hoạt động như một đại diện Server / hộ tịch viên. SGSN và GGSN là các phiên bản tăng cường của các nút được sử dụng ở GPRS và UMTS phát hành 1999 và 4. Điểm khác nhau duy nhất là ở chỗ các nút này không chỉ hỗ trợ dịch vụ số liệu gói mà cả dịch vụ chuyển mạch kênh (tiếng chẳng hạn). Vì thế cần hỗ trợ các khả năng chất lượng dịch vụ (QoS) hoặc bên trong SGSN và GGSN hoặc ít nhất ở các bộ định tuyến kết nối trực tiếp với chúng. Chức năng tài nguyên đa phương tiện (MRF) là chức năng lập cầu hội nghị được sử dụng để hỗ trợ các tính năng như tổ chức nhiều cuộc gọi nhiều phía và dịch vụ hội nghị. Cổng báo hiệu truyền tải (T-SGW) là một cổng báo hiệu SS7 để đảm bảo tương tác SS7 với các mạng tiêu chuẩn ngoài như PSTN, T-SGW hỗ trợ các giao thức Sigtran. Cổng báo hiệu chuyển mạch (R-SGW) là một nút đảm bảo tương tác báo hiệu với các mạng di động hiện có sử dụng SS7 tiêu chuẩn. Trong nhiều trường hợp T-SGW và R-SGW cùng tồn tại trên cùng một nền tảng. MGW thực hiện tương tác với các mạng ngoài ở mức đường truyền đa phương tiện. MGW ở kiến trúc mạng của phát hành 3GPP 5 có chức năng giống như ở phát hành 4. MGW được điều khiển bởi chức năng điều khiển các phương tiện MGCF. Giao thức điều khiển giữa các thực thể này là ITU-T H.248 . MGCW cũng liên lạc với CSCF. Giao thức được chọn cho giao diện này là SIP. Cần lưu ý rằng cấu trúc toàn IP phát hành 5 là một tăng cường của mạng phát hành 1999 hoặc 4. Nó đưa thêm vào một vùng mới trong mạng đó là vùng đa phương tiện IP (IM: IP Multimedia). Vùng mới này cho phép mang cả số liệu và thoại qua IP trên toàn tuyến nối đến máy cầm tay. Sử dụng vùng chuyển mạch gói cho mục đích truyền tải sử dụng SGSN, GGSN, Gn và Gi... là các nút và giao diện thuộc vùng PS. 1.3 Các DSP khả trình trong hệ thống thông tin di động 3G Khi hệ thống thông tin di động càng phát triển, nhu cầu về các dịch vụ thoại, số liệu, đa phương tiện ngày càng tăng. Đòi hỏi hệ thống phải có dung lượng lớn, vùng phủ rộng, tăng tốc độ tính toán và khả năng xử lý thông tin. Để đáp ứng nhu cầu sử dụng các dụng vụ thông tin di động tăng yêu cẩu hệ thống thông tin di động, và các thiết bị trong hệ thống không ngừng phát triển và ngày càng hoàn thiện. Sự phát triển của hệ thống thông tin di động phải tiến hành đồng thời cả mạng lõi, mạng truy nhập, và các máy cầm tay MS. Để thỏa mãn sự phát triển đó cần phải có các bộ xử lý dung lượng lớn, tốc độ cao, tăng cường tính mềm dẻo của hệ thống. Nhờ các DSP (Digital Signal Proccessor) khả trình mà các hệ thống thông tin di động ngày càng được hoàn thiện về mọi mặt. Đồ án tập trung nghiên cứu ứng dụng của DSP khả trình trong mạng truy nhập, từ đó đưa ra một số phương án thiết kế mô hình ứng dụng DSP khả trình. Nội dung chính gồm phần: Ứng dụng DSP khả trình trong máy cầm tay hai chế độ (2G và 3G), trong trạm thu phát gốc 3G, và trong xử lý dàn anten. Trong đồ án tập trung giới thiệu các DSP họ TMS320Cxx của TI. Trong đó có các DSP tiêu biểu là: TMS320C54x, TMS320C55x, TMS320C6x (TMS320C64TM , TMS320C6416). Đây là các DSP tiêu biểu được sử dụng phổ biến trong hệ thống 3G, và trong các ứng dụng xử lý tín hiệu số. CHƯƠNG 2: CÁC DSP KHẢ TRÌNH TRONG MÁY CẦM TAY HAI CHẾ ĐỘ (2G và 3G) 2.1 Giới thiệu Từ giữa những năm 1990 rất nhiều công ty trên toàn thế giới đã nỗ lực nghiên cứ

Các file đính kèm theo tài liệu này:

  • docDSP final.doc
  • docbia.doc
  • docdanh muc hinh ve.doc
  • docNhan xet.doc
  • pptSlide.ppt