7.1. Khái niệm bài toán và thuật toán
Trước khi xem xét đặc trưng của “bài toán” ta xét một số ví dụ.
Ví dụ 1. Bài toán kiểm tra tính nguyên tố.
Cho : số nguyên dương N;
Cần biết: N có là số nguyên tố hay không?
Ví dụ 2. Bài toán quản lý hồ sơ cán bộ.
Có : Hồ sơ gốc của các cán bộ trong cơ quan
Cần : Bảng thống kê, phân loại cán bộ theo trình độ văn hoá
Qua các ví dụ trên, ta thấy các bài toán được cấu tạo bởi hai thành phần cơ bản:
Thông tin vào (input): Thông báo cho ta biết các dữ liệu đã có;
Thông tin ra (output) : Thông báo cho ta cái cần tìm từ input;
Như vậy, việc cho một bài toán có nghĩa là cho input và output của nó. Cho bài
toán nghĩa là làm rõ câu hỏi "Có các dữ kiện gì và phải làm gì?" nhưng không cho biết
"Phải làm thế nào". Việc giải bài toán có nghĩa là xuất phát từ input dùng một số hữu hạn
các bước thao tác thích hợp để tìm được output theo yêu cầu của bài toán đã đề ra.
6 trang |
Chia sẻ: candy98 | Lượt xem: 590 | Lượt tải: 0
Bạn đang xem nội dung tài liệu Giáo trình Kỹ thuật lập trình - Module 7: Thuật toán xử lý thông tin, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
MODULE 7. THUẬT TOÁN XỬ LÝ THÔNG TIN
7.1. Khái niệm bài toán và thuật toán
Trước khi xem xét đặc trưng của “bài toán” ta xét một số ví dụ.
Ví dụ 1. Bài toán kiểm tra tính nguyên tố.
Cho : số nguyên dương N;
Cần biết: N có là số nguyên tố hay không?
Ví dụ 2. Bài toán quản lý hồ sơ cán bộ.
Có : Hồ sơ gốc của các cán bộ trong cơ quan
Cần : Bảng thống kê, phân loại cán bộ theo trình độ văn hoá
Qua các ví dụ trên, ta thấy các bài toán được cấu tạo bởi hai thành phần cơ bản:
Thông tin vào (input): Thông báo cho ta biết các dữ liệu đã có;
Thông tin ra (output) : Thông báo cho ta cái cần tìm từ input;
Như vậy, việc cho một bài toán có nghĩa là cho input và output của nó. Cho bài
toán nghĩa là làm rõ câu hỏi "Có các dữ kiện gì và phải làm gì?" nhưng không cho biết
"Phải làm thế nào". Việc giải bài toán có nghĩa là xuất phát từ input dùng một số hữu hạn
các bước thao tác thích hợp để tìm được output theo yêu cầu của bài toán đã đề ra.
Lưu ý rằng trong toán học có một xu hướng nghiên cứu định tính các bài toán.
Theo xu hướng này, khi xem xét các bài toán, người ta chỉ cần chứng tỏ sự tồn tại của
output khi cho input và nếu có thể, xét xem có bao nhiêu "lời giải" và nghiên cứu tính
chất của chúng. Trong các nghiên cứu như vậy, nhiều khi ta không cần tìm ra lời giải một
cách tường minh nhưng bằng cách dùng các công cụ toán học khác nhau một cách thích
hợp ta vẫn có thể chứng minh chặt chẽ các điều khẳng định liên quan đến lời giải. Chẳng
hạn, một định lý toán học khẳng định rằng nếu hàm f(x) liên tục trên đoạn [a, b] và f(a).
f(b)<0 thì tồn tại điểm c nằm giữa a và b sao cho f(c) = 0. Sự tồn tại lời giải theo nghĩa
này không cho ta cách khả thi để tìm ra lời giải.
Ở đây, ta sẽ quan niệm việc giải bài toán là việc xác định tường minh output theo
input bằng một quá trình có thể thực hiện một cách hiệu quả. Đó chính là nội dung cơ bản
của lý thuyết tính toán.
Theo lý thuyết tính toán, một quá trình gồm một dãy hữu hạn các thao tác có thể
thực hiện được sắp xếp theo một trình tự xác định dùng để giải một bài toán được gọi là
một thuật toán (algorithm). Như vậy, khác với quan niệm về việc giải một bài toán theo
toán học truyền thống, việc giải bài toán theo quan niệm của tin học có nghĩa là chỉ ra
một thuật toán mà về nguyên tắc, các thao tác này có thể "giao cho máy làm được". Từ
điển Oxford đưa ra một định nghĩa về thuật toán như sau “Algorithm: set of well-defined
rules for solving a problem in a finite number of steps”. Thực ra các định nghĩa như trên
không được chặt chẽ về mặt toán học. Tuy nhiên, quan niệm như vậy về việc giải bài toán
là cơ sở để có thể chuyển giao công việc cho máy tính. Bản thân máy tính là một thiết bị
vật lý vô tri vô giác, do đó với thể hiện vật lý cụ thể, máy tính chỉ có thể thực hiện được
các thao tác rất đơn giản (tất nhiên với tốc độ rất nhanh và chính xác).
Ví dụ, cho hai số nguyên dương a, b. Cần xây dựng thuật toán để tìm ước số
chung lớn nhất (UCLN) của a và b. Dưới đây là thuật toán Euclid đề xuất cho bài toán
nêu trên dựa trên một tính chất hiển nhiên là : Nếu a = b thì chính b là USCLN của a và b.
Ngược lại nếu a b thì USCLN(a,b) =
USCLN(b, a-b) .
Bài toán
Input : a, b nguyên dương
Output: UCLN của a và b
Thuật toán Euclid
Bước 1: Nếu a = b thì lấy giá trị chung này làm USCLN và kết thúc
Bước 2: Nếu a> b thì bớt a đi một lượng là b rồi quay trở lại bước 1.
Bước 3: Ngược lại, bớt b đi một lượng là a rồi quay trở lại bước 1.
Các thao tác bao gồm:
Phép gán giá trị: xây dựng các giá trị của đối tượng (ví dụ bớt a đi một lượng là b
hay cho USCLN là a)
Phép dừng, kết thúc quá trình xử lý
Phép chuyển có hoặc không có điều kiện cho phép thực hiện tiếp từ một bước nào
đó ví dụ sau bước 2 quay trở lại bước 1.
Ở cuối bước 3 của thuật toán trên ta gặp thao tác "thực hiện bước 1". Trong
trường hợp này bộ xử lý sẽ chuyển sang thực hiện bước 1 của thuật toán. Khi diễn đạt
thuật toán ta ngầm qui định rằng nếu không gặp phép chuyển điều khiển thì bộ xử lý sẽ
thực hiện tuần tự: sau bước thứ i sẽ chuyển sang bước thứ i + 1. Như vậy bước 2 nếu
không quay về bước 1 thì sẽ thực hiện tiếp bước 3.
7.2. Một số đặc trưng của thuật toán
Knuth – tác giả của bộ sách nổi tiếng “Nghệ thuật lập trình” đã đưa ra 5 đặc trưng
sau đây của thuật toán:
Input (dữ liệu vào): Mỗi thuật toán cần có một số (có thể bằng 0) các dữ liệu ban
đầu. Trong ví dụ thuật toán Euclid nói trên đó là hai số m và n.
Output (Kết quả): Thuật toán phải cho ra được kết quả - chính là mục đích
giải quyết bài toán thông qua thuật toán
Tính xác định:Tính xác định của thuật toán đòi hỏi ở mỗi bước các thao tác phải
hoàn toàn xác định, không có sự nhập nhằng, lẫn lộn, tuỳ tiện. Nói cách khác,
trong cùng một điều kiện, các chủ thể xử lý dù là người hay máy thực hiện cùng
một bước của thuật toán thì phải cho cùng một kết quả. Chính vì vậy, ngôn ngữ
mô tả thuật toán phải chặt chẽ để không thể hiểu lầm.
Tính khả thi: Các chỉ dẫn trong thuật toán phải có khả năng thực hiện được trong
một thời gian hữu hạn. Ví dụ sau đâu không thể là mô tả một thuật toán: gán cho
x giá trị 1 nếu bài toán tô màu giải được và cho giá trị 0 nếu bài toán tô màu
không giải được (Bài toán tô màu khẳng định không cần dùng quá 4 màu để tô
các nước trong bản đồ đề hai nước có biên giới chung phải có màu khác nhau.
Người ta kiểm chứng trên thực tế thì đúng nhưng chưa tìm được chứng minh cho
bài toán này)
Tính kết thúc (tính dừng): Việc thực hiện các bước theo một thuật toán phải
dừng sau một số hữu hạn bước. Thuật toán Euclid tìm UCLN thoả mãn tính dừng
vì sau mỗi bước ta thấy tổng a+b giảm thực sự nhưng không được nhỏ hơn 2. Vì
vậy quá trình trên nhất định phải dừng sau một số hữu hạn bước.
Ngoài 5 đặc trưng trên, trong một số tài liệu khác người ta còn nói đến tính phổ dụng.
Tính phổ dụng: Tính phổ dụng có nghĩa là một thuật toán có thể được áp dụng
với một lớp các bài toán với input thay đổi chứ không chỉ áp dụng cho một trường
hợp cụ thể. Thuật toán Euclid nói trên có thể áp dụng cho bất kỳ cặp hai số tự
nhiên
Cần lưu ý là trong khi tính dừng và tính xác định là điều kiện cần để một quá trình
là một thuật toán thì tính phổ dụng chỉ là một tính chất thường thấy vì có nhiều bài toán
có input hoàn toàn xác định, không tồn tại một lớp các bài toán tương tự.
7.3. Các phương pháp diễn tả thuật toán
Người ta thường diễn tả thuật toán bằng một trong ba cách thức sau đây.
7.3.1. Liệt kê từng bước
Liệt kê ra các quy tắc, các chỉ thị thực hiện giống như các ví dụ nói trên
Ta xét thêm ví dụ sau. Có 43 que diêm. Hai người chơi luân phiên bốc diêm. Mỗi
lượt, mỗi người bốc từ 1 đến 3 que diêm. Người nào bốc cuối cùng sẽ thắng cuộc. Thuật
toán để người đi trước luôn thắng cuộc được diễn tả bằng cách liệt kê từng bước như sau:
Bước 1: Bốc 3 que rồi đợi đối phương đi
Bước 2: Đối phương bốc (giả sử x que, 0<x<4). Sau đó thực hiện bước 3
Bước 3: Đến lượt người đi trước bốc a = (4-x) que và nếu còn diêm thì quay lại
bước 2.
Bước 4 : Tuyên bố thắng cuộc - kết thúc.
Bạn đọc hãy tự lý giải tại sao theo thuật toán này người đi trước luôn luôn thắng.
7.3.2. Lưu đồ hay còn gọi là sơ đồ khối
Lưu đồ (flow chart) là một phương tiện hình học giúp ta diễn tả thuật toán một
cách trực quan. Lưu đồ được tạo bởi các kiểu khối cơ bản nối với nhau bằng các đường
có hướng. Sau đây là một số khối được dùng để diễn đạt thuật toán.
Khối tính toán được biểu diễn bằng hình chữ nhật. Trong khối này ta viết một
hoặc một dãy các thao tác như tạo giá trị, hoặc là một nhóm công việc. Nếu để thể hiện
việc tính giá trị ta sẽ dùng dấu gán := với ý nghĩa đại lượng đứng bên trái dấu gán được
gán giá trị cho phía phải dấu gán. Khối tính toán có nhiều đường đi đến và 1 đường đi ra.
Hình 7.1. Các loại biểu diễn hình học trong sơ đồ khối
Khối điều kiện
được biểu diễn bằng hình
thoi hoặc hình lục giác.
Trong khối này ta viết một
điều kiện. Tuỳ theo điều
kiện này thoả mãn hay
không mà việc thực hiện
tiếp theo sẽ được chỉ dẫn
bởi một trong hai đường đi
ra mang dẫu + (cho trường
hợp đúng) hoặc dấu - (cho
trường hợp sai). Như vậy
khối điều kiện có 1 đường
đi đến và 2 đường đi ra.
Hai khối đặc biệt là
khối bắt đầu và khối kết
thúc được biểu diễn bằng
hình tròn chỉ rõ điểm bắt
đầu và điểm kết thúc
(điểm dừng) của thuật
toán. Khối bắt đầu không
có đường đi đến và có 1
đường đi ra. Khối kết thúc
không có đường đi ra.
Khối chỉ điểm
bắt đầu
Khối chỉ điểm
kết thúc
Hướng xử lý
Khối input
Khối output
Khối thao tác
Khối điều kiện
d := a
+
+
a, b
d a=b
a > b
a:= a - b b := b-a
Hình 7.2. Lưu đồ cho thuật toán Euclid
Trong khối input ghi rõ các đại lượng vào, và ở khối output ghi các đại lượng ra.
Khối input có thể đặt kế tiếp khối bắt đầu, còn khối output có thể đặt liền trước khối kết
thúc.
Chúng ta dùng lưu đồ diễn tả lại thuật toán Euclid tìm UCLN của hai số nguyên
dương.
Sau đây là lưu đồ cho bài toán bốc diêm. Lưu đồ này không cần cả khối input và
output. Trong các ô thao tác không chỉ là phép gán mà có thể là mô tả một hành động nào
đó
7.3.3. Ngôn ngữ thuật toán
Với cách thức này, thuật toán được diễn đạt gần như ngôn ngữ tự nhiên bằng một
số cách nói như “trong khi một điều kiện thoả mãn thì lặp lại một nhóm thao tác“ hay
“nếu một điều kiện thoả mãn thì thực hiện nhóm thao tác này ngược lại thực hiện nhóm
thao tác kia” hay “sau thao tác này thì thực hiện thao tác kia”. Như vậy các diễn đạt đó
chỉ rõ cách thiết lập thứ tự các thao tác và được gọi là cấu trúc điều khiển. Cấu trúc điều
khiển chính là cách thể hiện thuật toán của các ngôn ngữ lập trình bậc cao mà ta sẽ thảo
luận kỹ hơn trong phần ngôn ngữ lập trình.
Ví dụ thuật giải Euclid có thể thể hiện như sau:
Tuyên bố
thắng cuộc
Lấy 3 que
+
Số diêm
còn > 0
Ta lấy 4-x que
Đối phương lấy
x que diêm
Hình 7.3. Lưu đồ thuật toán trò chơi bốc diêm
Trong khi a ≠ b thì lặp lại khối sau
Nếu a > b thì
Bớt a đi một lượng là b
Nếu không thì
Bớt b đi một lượng là a
Cho tới khi a= b thì tuyên bố USCLN chính là giá trị chung của a và b
Hình 7.4. Thể hiện thuật toán Euclid bằng các cấu trúc điều khiển
7.4. Sơ lược về đánh giá thuật toán
Đối với một bài toán, có thể có nhiều thuật toán nhưng chúng phải cho cùng một
output đối với một input. Tuy nhiên chúng có thể khác nhau về hiệu quả:
Hiệu quả thời gian: cách xử lý là nhanh hay chậm. Ta có thể đánh giá căn cứ vào
số bước thực hiện.
Hiệu quả không gian. Có thể đánh giá không gian lưu trữ theo số các đối tượng
dùng để ghi nhớ các kết quả (kể cả kết quả trung gian).
Ví dụ: Để tìm USCLN có thể có nhiều thuật toán như
Thuật toán 1:
Bước 1: Phân tích các số a và b thành tích của các thừa số nguyên tố.
Bước 2:lấy tích của các thừa số chung với số mũ nhỏ nhất làm USCLN
Bước 3: Kết thúc xử lý
Thuật toán 2 : Thuật toán Euclid cải tiến
Bước 1: Chia a cho b tìm số dư r;
Bước 2: Nếu r = 0 thì thông báo kết quả:
UCLN là b và kết thúc công việc
Bước 3: Nếu r > 0 thì gán giá trị b cho a, gán giá trị r cho b rồi quay trở lại thực
hiện bước 1.
Về hiệu quả cả về không gian và thời gian thì thuật toán 1 tồi hơn thuật toán
Euclid đã trình bày trước đây rất nhiều vì số bước cần thiết thực sự để phân tích ra thừa
số nguyên tố là rất lớn. Thuật toán 2 thực sự là một cải tiến so với thuật toán Euclid mà ta
đã trình bày trước đây vì phép chia lấy phần dư thực tế đã thay cho hàng loạt phép trừ nói
trong thuật toán Euclid. Vì vậy trong trường hợp chung nó tìm được USCLN với số bước
xử lý ít hơn nhiều.
Trong tin học có cả một ngành chuyên đánh giá độ phức tạp của thuật toán, chủ
yếu là đánh giá về hiệu quả thời gian. Thực tế sử dụng cho thấy thách thức về không gian
lưu trữ có thể giải quyết dễ hơn thách thức về thời gian thực hiện.