Trong những năm gần đây, các hệ thống nhận dạng tự động (Auto Identification) ngày càng phát triển mạnh mẽ và được ứng dụng trong rất nhiều các lĩnh vực. Nhưng phát triển mạnh nhất hiện nay chính là công nghệ nhận dạng tự động sử dụng tần số sóng radio, đó chính là công nghệ RFID (Radio Frequency Identification). Cùng với sự phát triển của công nghệ sản xuất chip và công nghệ không dây, hệ thống RFID ngày càng phát triển và hoàn thiện hơn về mọi mặt. Việc tìm hiểu, nghiên cứu công nghệ này giúp chúng ta tiếp cận và tiến đến làm chủ công nghệ, từ đó chúng ta có thể triển khai các ứng dụng trong thực tế.
Nội dung của khoá luận tập trung nghiên cứu về lý thuyết anten, hệ thống RFID và thử nghiệm thiết kế anten cho hệ thống này. Bằng lý thuyết và thực nghiệm, khoá luận đã thực hiện được những nội dung sau đây:
- Nghiên cứu lý thuyết về anten và anten mạch dải
- Tìm hiểu hệ thống RFID
- Tìm hiểu, phân tích nguyên lý hoạt động và các đặc trưng cơ bản của anten dùng cho RFID (trường xa).
- Mô phỏng, thiết kế anten mạch dải cấu trúc zíc zắc dùng cho RFID hoạt động ở dải tần 2.45GHZ
75 trang |
Chia sẻ: oanhnt | Lượt xem: 1732 | Lượt tải: 2
Bạn đang xem trước 20 trang tài liệu Khóa luận Lý thuyết anten, hệ thống RFID, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
LỜI CẢM ƠN
Em xin chân thành cảm ơn TS Trần Minh Tuấn, người đã tận tình giúp đỡ, chỉ bảo, hướng dẫn em trong suốt thời gian thực hiện khóa luận.
Em xin bày tỏ lòng biết ơn thầy giáo GS.TSKH Phan Anh, thầy đã cho em những ý kiến quý báu để em hoàn thành khoá luận của mình.
Em xin gửi lời cảm ơn chân thành tới các thầy cô giáo trong Khoa Điện Tử - Viễn Thông, các thầy cô trong trường Đại học Công Nghệ - Đại học Quốc Gia Hà Nội, những người đã luôn nhiệt tình trong giảng dạy và chỉ bảo chúng em trong bốn năm học vừa qua.
Và em cũng xin cảm ơn các thầy cô và cán bộ trong Bộ môn Thông tin vô tuyến đã tạo điều kiện tốt nhất cho em và các bạn hoàn thành khóa luận của mình.
Cuối cùng tôi xin cảm ơn gia đình và các bạn của tôi, những người đã luôn ở bên cạnh động viên, giúp đỡ tôi trong những năm học vừa qua và nhất là trong thời gian thực hiện khóa luận này.
Mặc dù có nhiều cố gắng, nhưng trong quá trình viết bài vì thời gian có hạn và kiến thức thực tế của em còn hạn chế nên không tránh khỏi những sai sót. Vì vậy em rất mong được sự góp ý, chỉ bảo của thầy cô giáo để bài viết của em được hoàn thiện hơn.
Em xin chân thành cảm ơn!
Hà Nội, ngày 20 tháng 05 năm 2008
Sinh viên
Dương Đình Sáng
TÓM TẮT NỘI DUNG
Anten là bộ phận không thể thiếu trong các thiết bị thu phát, truyền tin. Nhất là với công nghệ kết nối không dây đang phát triển rất mạnh như hiện nay, anten đã có những thay đổi hết sức linh hoạt về phẩm chất, cấu trúc, kích thước…nhằm thoả mãn tối đa nhu cầu của người sử dụng.
Trong khuôn khổ đề tài này, cùng với việc tìm hiểu lý thuyết kỹ thuật anten, hệ thống RFID (Radio Frequency Identification), em đã nghiên cứu và thiết kế được một anten mạch dải có cấu trúc zíc zắc dùng cho hệ thống RFID, hoạt động ở dải tần 2.45GHz. Quá trình mô phỏng có sự trợ giúp của phần mềm Ansoft Designer.
Do thời gian thực hiện ngắn cộng với vốn kiến thức hạn chế nên khoá luận chắc chắn còn rất nhiều thiếu sót, em rất mong nhận được sự chỉ bảo của thầy cô để hoàn thiện hơn bào viết của mình.
Hà Nội, ngày 20 tháng 05 năm 2008
Sinh viên
Dương Đình Sáng
MỤC LỤC
MỤC LỤC
DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT
DANH MỤC CÁC BẢNG
DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ
MỞ ĐẦU 1
CHƯƠNG 1: MỘT SỐ KIẾN THỨC CƠ BẢN VỀ ANTEN VÀ ANTEN
MẠCH DẢI 2
1.1 Một số kiến thức cơ bản về anten 2 1.1.1 Mục đích, chức năng, nhiệm vụ của anten 2
1.1.2 Cấu trúc chung của hệ anten 2
1.1.3 Các thông số đặc trưng của anten 3
1.1.3.1 Trường bức xạ 3
1.1.3.2 Đặc tính định hướng của trường bức xạ 4
1.1.3.3 Đặc tính phân cực của trường bức xạ 9
1.1.3.4 Hệ số định hướng và hệ số tăng ích 10
1.1.4 Phối hợp trở kháng cho anten 12
1.2 Đường truyền vi dải và anten mạch dải 13
1.2.1 Đường truyền vi dải 13
1.2.1.1 Cấu trúc hình học của đường truyền vi dải 13
1.2.1.2 Các tham số cơ bản 14
1.2.1.3 Trở kháng đặc tính biến thiên của theo tần số 17
1.2.2 Anten mạch dải 17
1.2.2.1 Khái niệm 17
1.2.2.2 Cấu trúc và đặc tính cơ bản 17
CHƯƠNG 2: HỆ THỐNG RFID 21
2.1 Hệ thống RFID 2.1.1 Hệ thống nhận dạng tự động (Auto Identification-Auto ID) 21
2.1.1.1 Hệ thống mã vạch 21
2.1.1.2 Hệ thống nhận dạng sinh học 22
2.1.1.3 Hệ thống nhận dạng thẻ thông minh 22
2.1.2 Khái niệm về hệ thống RFID 23
2.1.3 Cấu tạo chung của hệ thống RFID 24
2.1.3.1 Tag / thẻ 24
2.1.3.2 Đầu đọc (Reader) 25
2.1.3.3 Middleware 25
2.1.4 Phân loại hệ thống RFID 25
2.1.4.1 RFID trường gần 26
2.1.4.2 RFID trường xa 26
2.1.5 Các tần số, quy định được sử dụng trong hệ thống RFID 27
2.1.6 Ưu điểm, nhược điểm của hệ thống RFID 29
2.1.6.1 Ưu điểm 29
2.1.6.2 Nhược điểm 30
2.1.7 Ứng dụng và xu hướng phát triển của RFID 30
2.1.7.1 Ứng dụng 30
2.1.7.2 Xu hướng phát triển 32
2.2 Anten trong hệ thống RFID 35
2.2.1 Nguyên lý hoạt động 35
2.2.1.1 Trường gần 35
2.2.1.2 Trường xa 36
2.2.2 Các loại anten dùng trong hệ thống RFID 37
CHƯƠNG 3: PHÂN TÍCH ANTEN CHO THẺ RFID TRƯỜNG XA 39
3.1 Đường Radio 41
3.2 EIRP và ERP 43
3.3 Độ tăng ích của anten thẻ 44
3.4 Hệ số phối hợp phân cực 44
3.5 Hệ số truyền công suất 44
3.6 RCS của anten 47
3.7 Tính toán khoảng đọc 50
CHƯƠNG 4: MÔ PHỎNG VÀ THIẾT KẾ ANTEN 52
4.1 Mô phỏng, thiết kế anten mạch dải có cấu trúc zíc zắc hoạt động tại dải tần
2.45GHz dung cho hệ thống RFID 52
4.2 Đo đạc thực nghiệm 60
4.3 Nhận xét- đánh giá 64
KẾT LUẬN 66
TÀI LIỆU THAM KHẢO 67
DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT
EIRP: Equivalent Isotropically Radiated Power
ERP: Effective Radiated Power
FR-4: Flame Resistant 4
HF: High Frequency
HFSS: High Frequency Structure Simulator
ISM: Industrial Scientific and Medical radio band
LF: Low Frequency
MWF: Microwave Frequency
RCS: Radar Cross Section
RFID: Radio Frequency Identification
UHF: Ultra High Frequency
DANH MỤC CÁC BẢNG
Bảng 1: Các hệ thống RFID trường gần và trường xa với các thống số liên quan.
Bảng 2: Giới hạn về công suất và tần số trong các hệ thống RFID tại một số các
quốc gia khác nhau.
Bảng3 : Số anten được cấp bằng sáng chế của một số nước từ năm 1991 đến
tháng 8 năm 2006.
Bảng 4 Hệ số phản xạ và hệ số truyền công suất là một hàm của tổn hao trả về.
Bảng 5: Hệ số K trong một vài trường hợp điện trở tải của anten khác nhau
DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ
Hình 1: Cấu trúc chung của hệ thống anten
Hình 2: Bản đồ hướng tính không gian trong mặt phẳng theo tọa độ
Hình 3: Giản đồ phương hướng chuẩn hóa trong hệ tọa độ cực
Hình 4: Giản đồ phương hướng chuẩn hóa trong hệ tọa vuông góc
Hình 5: Mạch phối hợp phối hợp trở kháng giữa trở kháng tải bất kỳ và đường truyền sóng
Hình 6: Đường truyền vi dải
Hình 7: Phân bố trường của đường truyền vi dải
Hình 8: Đường truyền vi dải đặt trong hệ toạ độ Đecac
Hình 9: Trở kháng đặc tính và hệ số điện môi hiệu ứng của đường truyền vi dải được tính theo phương pháp của Wheeler
Hình 10: Anten mạch dải
Hình 11: Anten mạch dải nhìn từ mặt bên
Hình 12: Khe bức xạ Anten mạch dải
Hình 13: Các dạng anten mạch dải điển hình
Hình 14: Tiếp điện cho anten mạch dải
Hình 15: Mô hình các hệ thống nhận dạng tự động
Hình 16: Sơ đồ khối hệ thống RFID ứng dụng trong công ty
Hình 17 : Cấu trúc cơ bản của hệ thống RFID
Hình 18: Dải tần chính dành cho ứng dụng RFID
Hình 19: Các phương pháp xử lý dữ liệu
Hình 20: Ứng dụng RFID điển hình
Hình 21 : Biểu đồ tăng trưởng số anten được cấp bằng sáng chế của một số nước từ năm 1981 đến tháng 8 năm 2006
Hình 22: Biểu đồ phân bố số anten được cấp bằng sáng chế của một số nước tính đến tháng 8 năm 2006
Hình 23: Truyền công suất và thông tin giữa thẻ và đầu đọc trong hệ thống RFID ghép cảm ứng.
Hình 24: Cơ chế cấp nguồn và giao tiếp trong hệ thống RFID trường xa
Hình 25: Các loại anten dùng trong hệ thống
Hình 26: Nguyên lý hoạt giữa đầu đọc và thẻ trong một hệ thống RFID thụ động trường xa
Hình 27: Cơ chế hoạt động truyền năng lượng và thông tin cho các hệ thống RFID trường xa
Hình 28: Công suất truyền trong thẻ RFID và mạch tương đương của nó
Hình 29: Quan hệ giữa hệ số truyền công suất với tổn hao trả về
Hình 30: Biểu đồ công suất bức xạ trở lại của một anten phối hợp lien hợp phức được chuẩn hoá bởi công suất bức xạ trở lại của một anten tương tự khi ngắn mạch bởi tỉ số giá trị tuyệt đối điện kháng chia cho điện trở anten
Hình 31: Đo khoảng đọc trong một phòng không có tiếng vọng
Hình 32: Cấu trúc anten zíc zắc
Hình 33: Hình 3-D mô phỏng anten bằng phần mềm Ansoft HFSS
Hình 34: Phân bố trường E theo biên độ ở bề mặt anten
Hình 35: Bức xạ 3-D của anten
Hình 36: Giản đồ bức xạ của anten trong mặt phẳng
Hình 37: Hệ số khuyếch đại Gain của anten
Hình 38: Thông số tổn hao trả về_return loss của anten
Hình 39: Hệ số sóng đứng và return loss của anten
Hình 40: Hình 3-D mô phỏng bằng phần mềm Ansoft HFS của anten zíc zắc hình chữ nhật tiếp điện ở giữa
Hình 41: Thông số return loss của anten zíc zắc hình chữ nhật tiếp điện ở giữa
Hình 42: Bức xạ 3-D của anten zíc zắc hình chữ nhật tiếp điện ở giữa
Hình 43: Hệ số khuyếch đại Gain của anten zíc zắc hình chữ nhật tiếp điện ở giữa
Hình 44: Hình 3-D mô phỏng bằng phần mềm Ansoft HFSS của anten zíc zắc hình tam giác tiếp điện ở giữa
Hình 45: Thông số return loss của anten zíc zắc hình tam giác tiếp điện ở giữa
Hình 46: Bức xạ 3-D của anten zíc zắc hình tam giác tiếp điện ở giữa
Hình 47: Hệ số khuyếch đại Gain của anten zíc zắc hình tam giác tiếp điện ở giữa
Hình 48: Cấu trúc anten thực nghiệm
Hình 48: Thông số return loss của anten thực nghiệm
Hình50: Độ rộng băng thông
Hình 51: Hệ số sóng đứng và return loss của anten thực nghiệm
Hình 52: Đồ thị Smith của anten thực nghiệm
Hình 53: Thông số return loss mô phỏng và thực nghiệm
MỞ ĐẦU
Trong những năm gần đây, các hệ thống nhận dạng tự động (Auto Identification) ngày càng phát triển mạnh mẽ và được ứng dụng trong rất nhiều các lĩnh vực. Nhưng phát triển mạnh nhất hiện nay chính là công nghệ nhận dạng tự động sử dụng tần số sóng radio, đó chính là công nghệ RFID (Radio Frequency Identification). Cùng với sự phát triển của công nghệ sản xuất chip và công nghệ không dây, hệ thống RFID ngày càng phát triển và hoàn thiện hơn về mọi mặt. Việc tìm hiểu, nghiên cứu công nghệ này giúp chúng ta tiếp cận và tiến đến làm chủ công nghệ, từ đó chúng ta có thể triển khai các ứng dụng trong thực tế.
Nội dung của khoá luận tập trung nghiên cứu về lý thuyết anten, hệ thống RFID và thử nghiệm thiết kế anten cho hệ thống này. Bằng lý thuyết và thực nghiệm, khoá luận đã thực hiện được những nội dung sau đây:
Nghiên cứu lý thuyết về anten và anten mạch dải
Tìm hiểu hệ thống RFID
Tìm hiểu, phân tích nguyên lý hoạt động và các đặc trưng cơ bản của anten dùng cho RFID (trường xa).
Mô phỏng, thiết kế anten mạch dải cấu trúc zíc zắc dùng cho RFID hoạt động ở dải tần 2.45GHZ
CHƯƠNG 1
MỘT SỐ KIẾN THỨC CƠ BẢN VỀ ANTEN VÀ ANTEN
MẠCH DẢI
1.1 Một số kiến thức cơ bản về anten
1.1.1 Mục đích, chức năng, nhiệm vụ của anten:
Việc truyền năng lượng điện từ trong không gian có thể được thực hiện theo hai cách:
- Dùng các hệ truyền dẫn: Nghĩa là các hệ dẫn sóng điện từ như đường dây song hành, đường truyền đồng trục, ống dẫn sóng kim loại hoặc điện môi v.v…Sóng điện từ truyền lan trong các hệ thống này thuộc loại sóng điện từ ràng buộc.
- Bức xạ sóng ra không gian: Sóng sẽ được truyền đi dưới dạng sóng điện từ tự do.
Thiết bị dùng để bức xạ sóng điện từ hoặc thu nhận sóng từ không gian bên ngoài được gọi là anten.
Anten là bộ phận quan trọng không thể thiếu được của bất kỳ hệ thống vô tuyến điện nào.
Trong thông tin không dây anten làm nhiệm vụ bức xạ và hấp thụ sóng điện từ. Nó được sử dụng như một bộ chuyển đổi sóng điện từ từ các hệ truyền dẫn định hướng sang môi trường không gian tự do.
Anten sử dụng trong các hệ mục đích khác nhau thì có những yêu cầu khác nhau. Với phát thanh - truyền hình làm nhiệm vụ quảng bá thông tin thì anten phát thực hiện bức xạ đồng đều trong mặt phẳng ngang của mặt đất để cho các đài thu ở các hướng bất kỳ đều có thể thu được tín hiệu của đài phát. Trong thông tin mặt đất hoặc vũ trụ, thông tin chuyển tiếp vô tuyến điều khiển thì yêu cầu anten phát bức xạ với hướng tính cao...
1.1.2 Cấu trúc chung của hệ anten:
Một hệ truyền thông tin không dây đơn giản thường bao gồm các khối cơ bản: máy phát – anten phát – anten thu – máy thu. Đường truyền dẫn sóng điện từ giữa máy phát và anten phát cũng như giữa máy thu và anten thu được gọi là Fide (Feeder).
Ngày nay, cùng với sự phát triển của khoa học công nghệ trong các lĩnh vực thông tin, nhận dạng, rađa điều khiển v.v…cũng đòi hỏi anten không chỉ đơn thuần làm nhiệm vụ bức xạ hay thu sóng điện từ mà còn tham gia vào quá trình gia công tín hiệu. Trong trường hợp tổng quát, anten cần được hiểu là một tổ hợp bao gồm nhiều hệ thống; trong đó chủ yếu nhất là hệ thống bức xạ hoặc cảm thụ sóng, bao gồm các phần tử anten (dùng để thu hoặc phát), hệ thống cung cấp tín hiệu đảm bảo việc phân phối năng lượng cho các phần tử bức xạ với các yêu cầu khác nhau (trường hợp anten phát), hoặc hệ thống gia công tín hiệu (trường hợp anten thu). Sơ đồ chung của hệ thống vô tuyến điện cùng với thiết bị anten như sau:
Hệ thống cung cấp tín hiệu
Hệ thống bức xạ
Hệ thống cảm thụ bức xạ
Hệ thống gia công tín hiệu
Thiết bị điều chế
Thiết bị xử lý tin
Máy thu
Máy phát
Anten phát
Anten thu
Hệ thống phát
Hệ thống thu
Hình 1: Cấu trúc chung của hệ thống anten
1.1.3 Các thông số đặc trưng của anten:
1.1.3.1 Trường bức xạ
Để khảo sát đặc tính trường của dòng, ta thường chia không gian khảo sát làm hai khu vực chính: trường gần và trường xa.
Trường gần là miền không gian bao quanh hệ thống dòng, có bán kính r khá nhỏ so với bước sóng (r << λ). Thừa số pha của trường trong khu vực này là:
Khi đó có thể bỏ qua sự chậm pha của trường ở điểm khảo sát so với nguồn, tương tự như trường hợp trường chuẩn tĩnh.
Năng lượng của trường gần có tính dao động. Năng lượng này trong một phần tư chu kỳ đầu thì dịch chuyển từ nguồn trường ra không gian xung quanh và trong phần tư chu kỳ tiếp theo lại dịch chuyển ngược trở lại, giống như sự trao đổi năng lượng trong một mạch dao động. Vì vậy trường ở khu gần còn được gọi là trường cảm ứng, và khu gần được gọi là khu cảm ứng.
Trường xa là miền không gian bao quanh hệ thống dòng, có bán kính r khá lớn so với bước sóng (r >> λ). Khi ấy ta không thể bỏ qua sự chậm pha của trường ở điểm khảo sát. Điện trường và từ trường của khu xa luôn đồng pha nhau, do đó năng lượng bức xạ được dịch chuyển từ nguồn vào không gian xung quanh. Trường ở khu vực này có đặc tính sóng lan truyền nên trường xa còn được gọi là khu sóng, hay khu bức xạ. Khi khảo sát các bài toán bức xạ thì chúng ta thường chỉ quan tâm đến trường xa.
Ta có thể rút ra một số tính chất tổng quát của trường ở xa trong không gian tự do của một hệ thống nguồn hỗn hợp như sau:
Trường bức xạ có dạng sóng chạy, lan truyền từ nguồn ra xa vô tận. Biên độ trường suy giảm tỷ lệ nghịch với khoảng cách.
Vectơ điện tích và từ trường có hướng vuông góc với nhau và vuông góc với hướng truyền lan. Sóng bức xạ thuộc loại sóng điện-từ ngang.
Sự biến đổi của cường độ điện tích và từ trường trong không gian (khi R không đổi) được xác định bởi tổ hợp các hàm bức xạ và . Các hàm số này phụ thuộc vào phân bố dòng điện và dòng từ trong không gian của hệ thống bức xạ. Trong trường hợp tổng quát chúng là các hàm phức số.
1.1.3.2 Đặc tính định hướng của trường bức xạ
a) Đồ thị phương hướng biên độ và pha
Gọi hàm số đặc trưng cho sự phụ thuộc của cường độ trường bức xạ theo hướng khảo sát, ứng với khoảng cách R không đổi, là hàm phương hướng của hệ thống bức xạ và kí hiệu là .
Trong trường hợp tổng quát, hàm phương hướng là hàm vectơ phức, bao gồm các thành phần theo và :
Biên độ của các hàm phương hướng có quan hệ với phân bố biên độ của các thành phần trường, còn argument có quan hệ với phân bố pha của trường trên một mặt cầu có bán kính R, tâm đặt tại gốc tọa độ.
b) Hàm phương hướng biên độ
Nếu định nghĩa hàm phương hướng biên độ là hàm số biểu thị quan hệ tương đối của biên độ cường độ trường bức xạ theo các hướng khảo sát khi R không đổi, thì nó chính là biên độ của hàm phương hướng phức. Trong trường hợp tổng quát, biên độ của hàm phương hướng có thể là các hàm có dấu biến đổi khi thay đổi. Do đó hàm phương hướng biên độ được định nghĩa cụ thể hơn là môđun của hàm phương hướng phức. Như vậy, hàm phương hướng biên độ của trường tổng sẽ là:
(chỉ số m là kí hiệu biên độ của hàm bức xạ)
Giản đồ phương hướng của anten được định nghĩa là một đồ thị không gian biểu thị sự biến đổi tương đối của biên độ cường độ trường. Giản đồ phương hướng xét theo phương diện hình học, là một mặt được vẽ bởi đầu mút của vectơ có độ dài bằng giá trị của hàm phương hướng ứng với các góc (θ,φ) khác nhau.
Có nhiều cách khác nhau để biểu thị đặc tính phương hướng không gian của trường bức xạ, cụ thể là:
- Biểu diễn 3-D: Giản đồ phương hướng được thiết lập bằng cách lấy một mặt cầu bao bọc nguồn bức xạ. Tâm của mặt cầu được chọn trùng với gốc của hệ tọa độ cầu. Khi ấy, mỗi điểm cường độ trường đo được trên mặt cầu sẽ tương ứng với một cặp giá trị nhất định của tọa độ góc (θ,φ).
q = 90o
f = 270o
q = 90o
f = 90o
q = 90o
f = 0o
q = 0o
q = 180o
Hình 2: Bản đồ hướng tính không gian trong mặt phẳng theo tọa độ
- Biểu diễn 2-D trong mặt phẳng E và H: Ngoài cách biểu diễn 3-D như trên, giản đồ phương hướng còn được biểu diễn bởi 2 đồ thị 2-D trong mặt phẳng E và mặt phẳng H. Giản đồ phương hướng 3-D có thể được xây dựng từ hai giản đồ 2-D này. Để có được giản đồ bức xạ 2-D, hệ anten được đo giản đồ phương hướng trong hai mặt phẳng E và H của anten (mặt phẳng cắt). Mặt phẳng cắt thu được bằng cách giữ nguyên một đại lượng θ hoặc ф và thay đổi đại lượng còn lại.
- Biểu diễn dưới dạng các đường đẳng mức: Giản đồ phương hướng còn có thể biểu diễn bởi các đường cong đẳng mức của cường độ trường. Các đường cong này là các đường khép kín. Cực đại của giản đồ phương hướng và của các múi phụ được biểu thị bởi các dấu chấm trên mặt cầu. Khi đem chiếu phần mặt cầu có các đường đẳng trị nói trên lên mặt phẳng ta sẽ nhận được giản đồ phương hướng của trường bức xạ.
Tuy nhiên, khi biểu diễn giản đồ phương hướng, cần phải chọn các mặt phẳng cắt sao cho nó phản ánh được đầy đủ nhất đặc tính phương hướng của hệ thống bức xạ:
- Khi giản đồ phương hướng có dạng tròn xoay thì có thể chọn mặt cắt là mặt phẳng đi qua trục đối xứng của đồ thị.
- Khi giản đồ phương hướng có dạng phức tạp hơn thì mặt cắt thường được chọn là hai mặt phẳng vuông góc với nhau và đi qua hướng cực đại của giản đồ phương hướng. Hướng trục của hệ tọa độ có thể chọn tùy ý nhưng thường được chọn sao cho thích hợp với dạng của giản đồ phương hướng. Nếu giản đồ phương hướng có trục đối xứng thì tốt nhất nên chọn trục đó làm trục tọa độ, còn không thì chọn hướng cực đại của giản đồ phương hướng.
Giản đồ phương hướng 2-D có thể biểu diễn trong hệ toạ độ cực hoặc hệ toạ độ vuông góc:
- Hệ toạ độ cực thường được sử dụng để vẽ giản đồ anten có độ định hướng không cao. Định dạng này đặc biệt hữu dụng để quan sát phân bố công suất trong không gian.
- Hệ tọa độ vuông góc được sử dụng để biểu thị giản đồ phương hướng hẹp một cách chi tiết. Trường hợp này biên độ tín hiệu nằm trên trục y và góc nghiêng nằm trên trục x. Khi đó các giá trị của |fθ| hoặc |fφ| có thể được biểu thị theo thang tỉ lệ thông thường hay theo thang logarit.
Để thuận tiện cho việc thiết lập và phân tích các giản đồ phương hướng, ta thường dùng giản đồ phương hướng chuẩn hóa. Về mặt toán học, hàm phương hướng chuẩn hóa là hàm hướng chia cho giá trị cực đại của môđun (lấy giá trị tuyệt đối).
Dưới đây là ví dụ về giản đồ phương hướng chuẩn hoá trong hệ tọa độ cực và hệ tọa độ vuông góc:
Hình 3: Giản đồ phương hướng chuẩn hóa trong hệ tọa độ cực
Hình 4: Giản đồ phương hướng chuẩn hóa trong hệ tọa vuông góc
Để so sánh giản đồ phương hướng của các anten khác nhau, ta đưa ra khái niệm độ rộng của giản đồ phương hướng. Độ rộng của giản đồ phương hướng được định nghĩa là góc giữa hai hướng, mà theo hai hướng đó cường độ trường hoặc công suất bức xạ giảm đến một giá trị nhất định. Thường thì độ rộng của giản đồ phương hướng được xác định ở hai mức:
- Độ rộng của giản đồ phương hướng theo mức không là góc giữa hai hướng mà theo đó cường độ trường bức xạ bắt đầu giảm đến không.
- Độ rộng của giản đồ phương hướng theo mức nửa công suất (-3dB) là góc giữa hai hướng mà theo đó công suất bức xạ giảm đi một nửa so với hướng cực đại (ứng với cường độ trường giảm đi lần).
c) Hàm phương hướng pha
Đặc tính phương hướng pha của anten biểu thị trong các hàm số và của công thức (1.3). Ở đây, và chỉ biểu thị pha của hàm phương hướng, còn pha của các thành phần vectơ trường tại điểm khảo sát được xác định bởi:
Với k là hệ số truyền sóng và R là khoảng cách từ điển khảo sát tới anten.
1.1.3.3 Đặc tính phân cực của trường bức xạ
Ta đã biết ba đặc tính cơ bản của trường bức xạ là đặc tính phương hướng biên độ, đặc tính phương hướng pha và đặc tính phân cực. Ở