Khóa luận Nghiên cứu khả năng xử lý Niken trong nước thải mạ điện bằng phương pháp kết tủa kết hợp với hấp phụ sử dụng than bùn biến tính

Như chúng ta đã biết, nước là một tài nguyên thiên nhiên quý giá, là một trong bốn thành phần cấu tạo môi trường. Trái đất sẽ không thể có sự sống nếu thiếu nước. Nước đóng vai trò quan trọng trong sản xuất công nghiệp, nông nghiệp và đời sống. Ngày nay, sự phát triển của khoa học kỹ thuật đã làm cho đời sống của con người ngày càng được nâng cao. Tuy nhiên, cùng với sự phát triển đó là tình trạng ô nhiễm môi trường, đặc biệt là ô nhiễm môi trường nước càng ngày càng gia tăng. Rất nhiều các hóa chất độc hại được thải vào các nguồn nước từ các hoạt động sống và các quá trình sản xuất của con người, trong đó phải kể đến các kim loại nặng như: niken, đồng, chì, crôm Các kim loại này sau khi thâm nhập vào cơ thể, được tích lũy dần dần và gây rối loạn tổng hợp hemoglobin, chuyển hóa vitamin D, rối loạn chức năng của thận, phá hủy tủy sống, gây ung thư .[4] Để xử lý kim loặi nặng, có thể sử dụng một số phương pháp sau: Phương pháp kết tủa, phương pháp trao đổi ion, phương pháp hấp phụ Cho đến nay đã có nhiều công trình nghiên cứu về các loại vật liệu hấp phụ khác nhau, và ứng dụng của chúng để xử lý kim loại nặng trong nước. Hiện nay, các vật liệu hấp phụ có nguồn gốc tự nhiên với giá thành rẻ ngày càng thu hút sự quan tâm của các nhà khoa học. Than bùn là một loại khá phổ biến vì rẻ tiền và có khả năng hấp phụ vì vậy chúng tôi chọn than bùn là đối tượng nghiên cứu. Mục đích của khóa luận này là : “Nghiên cứu khả năng xử lý Niken trong nước thải mạ điện bằng phương pháp kết tủa kết hợp với hấp phụ sử dụng than bùn biến tính”.

doc44 trang | Chia sẻ: vietpd | Lượt xem: 2000 | Lượt tải: 4download
Bạn đang xem trước 20 trang tài liệu Khóa luận Nghiên cứu khả năng xử lý Niken trong nước thải mạ điện bằng phương pháp kết tủa kết hợp với hấp phụ sử dụng than bùn biến tính, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
MỞ ĐẦU Như chúng ta đã biết, nước là một tài nguyên thiên nhiên quý giá, là một trong bốn thành phần cấu tạo môi trường. Trái đất sẽ không thể có sự sống nếu thiếu nước. Nước đóng vai trò quan trọng trong sản xuất công nghiệp, nông nghiệp và đời sống. Ngày nay, sự phát triển của khoa học kỹ thuật đã làm cho đời sống của con người ngày càng được nâng cao. Tuy nhiên, cùng với sự phát triển đó là tình trạng ô nhiễm môi trường, đặc biệt là ô nhiễm môi trường nước càng ngày càng gia tăng. Rất nhiều các hóa chất độc hại được thải vào các nguồn nước từ các hoạt động sống và các quá trình sản xuất của con người, trong đó phải kể đến các kim loại nặng như: niken, đồng, chì, crôm … Các kim loại này sau khi thâm nhập vào cơ thể, được tích lũy dần dần và gây rối loạn tổng hợp hemoglobin, chuyển hóa vitamin D, rối loạn chức năng của thận, phá hủy tủy sống, gây ung thư…..[4] Để xử lý kim loặi nặng, có thể sử dụng một số phương pháp sau: Phương pháp kết tủa, phương pháp trao đổi ion, phương pháp hấp phụ…Cho đến nay đã có nhiều công trình nghiên cứu về các loại vật liệu hấp phụ khác nhau, và ứng dụng của chúng để xử lý kim loại nặng trong nước. Hiện nay, các vật liệu hấp phụ có nguồn gốc tự nhiên với giá thành rẻ ngày càng thu hút sự quan tâm của các nhà khoa học. Than bùn là một loại khá phổ biến vì rẻ tiền và có khả năng hấp phụ vì vậy chúng tôi chọn than bùn là đối tượng nghiên cứu. Mục đích của khóa luận này là : “Nghiên cứu khả năng xử lý Niken trong nước thải mạ điện bằng phương pháp kết tủa kết hợp với hấp phụ sử dụng than bùn biến tính”. CHƯƠNG 1. TỔNG QUAN 1.1 Khái niệm môi trường nước và ô nhiễm nguồn nước 1.1.1 Khái niệm môi trường nước Môi trường nước là một trong bốn thành phần cấu tạo môi trường, không thể thiếu trong hệ sinh thái. Môi trường nước duy trì sự sống, sự trao đổi chất, sự cân bằng sinh thái trên toàn cầu. Bản thân môi trường nước là dạng môi trường đầy đủ có hai thành phần chính là nước và các chất tan, chất khí. Môi trường nước bao gồm các dạng nước : nước ngọt, nước mặn, nước ao hồ, sông ngòi, nước đóng băng tuyết, hơi nước và nước ngầm. 1.1.2 Chu trình các nguồn nước Trong tự nhiên nguồn nước luôn được luân hồi theo chu trình thủy văn. Theo chu trình thủy văn này lượng nước luôn được bảo tồn hay được chuyển từ dạng này sang dạng khác hoặc từ nơi này đến nơi khác. Tùy theo nguồn nước, thời gian luân hồi có thể ngắn đến vài tuần hoặc dài hàng ngàn năm. Nguồn nước ngọt được luân hồi qua các quá trình bốc hơi và mưa. 1.1.3 Tài nguyên nước ở Việt Nam và vai trò của nước trong cuộc sống[1; 2] Nước ta nằm trong vùng khí hậu nhiệt đới gió mùa. Tài nguyên nước mặt của nước ta phong phú, gần 90% lượng nước từ bên ngoài chảy vào tập trung ở đồng bằng sông Cửu Long. Phần nước chảy trên lãnh thổ Việt Nam lại phân phối không đều theo không gian và thời gian. Nguồn nước mặt dồi dào làm cho nước ngầm cũng phong phú. Theo đánh giá, tổng lượng nước ngầm trên toàn lãnh thổ đạt 1515 m3, xấp xỉ 15% tổng trữ lượng nước mặt. Một phần nước ngầm ở đồng bằng Bắc Bộ và đặc biệt ở đồng bằng Nam bộ bị nhiễm mặn và nhiễm phèn. Tài nguyên nước của Việt Nam phong phú, nhưng nguồn nước thực sự có thể sử dụng, đảm bảo chất lượng còn hạn chế. Hiện nay mới chỉ có khoảng 20 – 40% gia đình Việt Nam đủ nước dùng theo tiêu chuẩn nước sạch. Hiện tượng suy giảm chất lượng nước mặt đang lan rộng ra nhiều nơi do ô nhiễm của các chất thải từ các khu công nghiệp, nông nghiệp, giao thông vận tải…..Riêng thành phố Hà Nội hiện nay tổng lượng nước thải trong một ngày đêm từ 300.000 – 400.000 m3, trong đó nước thải từ sản xuất công nghiệp chiếm 85 – 90 ngàn m3. Tổng lượng rác thải sinh hoạt 1800 – 2000 m3/ngày đêm, nhưng mới chỉ gom thu được khoảng 850 m3, phần còn lại được xả vào các khu đất ven hồ, kênh mương gây ô nhiễm nặng cho nguồn nước. Trong khi đó, trong sinh hoạt nhu cầu tối thiểu bình quân cho một người trong một ngày khoảng 50 lít nước/ngày. Ở Hà Nội hiện nay đang phấn đấu đạt bình quân khoảng 200 – 250 lít nước/người/ngày đêm. Trong nông nghiệp, nước được cung cấp cho các quá trình chăn nuôi, trồng trọt, tưới tiêu, nuôi trồng thủy sản….Số lượng nước dùng trong nông nghiệp lớn, nhưng về mặt tiêu chuẩn, nước cung cấp cho nông nghiệp không đòi hỏi quá chặt chẽ nghiêm ngặt như nước sinh hoạt. Nhu cầu về nước cho sản xuất công nghiệp là rất lớn, đa dạng. Ví dụ như để sản xuất 1 lít bia cần khoảng 15 lít nước, 1 tấn giấy cần 300 m3 nước, 1 tấn nhựa tổng hợp cần 2000 m3 nước…….. 1.1.4 Ô nhiễm nguồn nước 1.1.4.1 Định nghĩa ô nhiễm môi trường nước Môi trường nước có thể bị nhiễm bẩn hoặc bị ô nhiễm. Nhiễm bẩn có thể màu sắc bị thay đổi nhưng chưa gây hại. Môi trường nước được xem bị ô nhiễm khi nồng độ chất độc hại gây ô nhiễm vượt quá mức an toàn cho phép. Ô nhiễm nguồn nước có thể do sản xuất nông nghiệp, công nghiệp, giao thông vận tải và sinh hoạt của con người. Ô nhiễm môi trường nước là một vấn đề của toàn cầu.Kiểm soát và hạn chế sự ô nhiễm nước là một vấn đề cấp bách và cần thiết. Vấn đề này có liên quan đến các yếu tố chính trị, kinh tế, xã hội, khoa học, công nghệ và nhận thức của cộng đồng. 1.1.4.2 Các nguồn gây ô nhiễm nước Có nhiều nguồn gây ô nhiễm nước bề mặt và nước ngầm. Hầu hết các nguồn gây ô nhiễm là do hoạt động sản xuất công nghiệp, nông nghiệp, tiểu thủ công nghiệp, ngư nghiệp, giao thông,dịch vụ và sinh hoạt do con người. Các nguồn gây ô nhiễm kim loại nặng do hoạt động công nghiệp bao gồm: khai thác mỏ; công nghiệp sản xuất các hợp chất vô cơ; quá trình sản xuất sơn, mực, thuốc nhuộm và một lượng lớn kim loại được thải ra từ nguồn nước thải của công nghệ mạ điện. Mạ điện Nước thải từ công nghiệp mạ điện có chứa nhiều kim loại nặng độc hại như đồng, kẽm, crôm, niken, cadimi…Nồng độ các kim loại trong nước thải dao động đáng kể và tuỳ thuộc vào điều kiện công nghệ. Trong các nhà máy này hàm lượng kim loại nặng hiếm khi thấp hơn 10mg/l và có thể đạt tới 1000mg/l. Ví dụ như thành phần của nước rửa từ phân xưởng mạ đồng có chứa 2, 8 ÷ 14 mg Cu2+/l; phân xưởng mạ Cd chứa 48 ÷ 240 mg Cd2+/l; phân xưởng mạ kẽm chứa 70 ÷ 350 mg Zn2+/l. Hiện nay ở nước ta hầu hết nước thải từ các cơ sở mạ điện đều không được xử lý mà chỉ được pha lỏng hoặc thải trực tiếp ra môi trường. Vì vậy ô nhiễm do kim loại nặng là hết sức nghiêm trọng. Công nghiệp khai khoáng Các kim loại nặng được phát thải vào môi trường trong suốt các quá trình từ khai thác đến sản xuất. Sản lượng các kim loại được khai thác trên toàn thế giới trong một vài thập kỉ gần đây đang gia tăng mạnh mẽ. Hàng năm thế giới khai thác và sử dụng khoảng 10000 tấn thuỷ ngân, khai thác 10000 tấn quặng để sản xuất khoảng 400 tấn beryl… Đặc biệt việc khai thác kim loại màu tạo ra nguồn nước thải chứa hàm lượng các kim loại nặng khá cao. Những nguồn nước này ở các hồ ao, sau đó chảy ra sông suối làm ô nhiễm cả vùng hạ lưu. Sự ô nhiễm các kim loại này còn kéo dài cả khi mỏ đã bị bỏ hoang. Công nghệ sản xuất các hợp chất vô cơ Công nghệ sản xuất các hợp chất vô cơ như sản xuất acquy, bột màu, gốm sứ, thuỷ tinh, thuộc da … đều sử dụng nhiều kim loại nặng độc hại như chì, crôm, thuỷ ngân …. Theo tính toán của các nhà nghiên cứu thì một cơ sở sản xuất xút clo trung bình sử dụng 50 tấn thuỷ ngân trong quá trình vận hành sản xuất. Lượng hao hụt ở đây là đáng kể, chưa kể đến những sự cố do rủi ro khác. Thuỷ ngân còn sử dụng trong công nghiệp điện như bóng đèn điện, đèn cao áp, pin khô, acquy …. Trong các lĩnh vực dân dụng và điều khiển khác như nhiệt kế, rơle…. . 1.2 Tác dụng sinh hoá của kim loại nặng đối với con người và môi trường Hầu hết các kim loại nặng tồn tại trong nước ở dạng ion. Độc tính của kim loại nặng đối với sức khoẻ con người và động vật đặc biệt nghiêm trọng do sự tồn tại lâu dài và bền vững của nó trong môi trường. Ví dụ như chì là một trong những kim loại có khả năng tồn tại khá lâu, ước tính nó được giữ lại trong môi trường với khoảng thời gian 150 – 5000 năm và có thể duy trì ở nồng độ cao trong 150 năm sau khi bón bùn cho đất. Chu trình phân rã sinh học trung bình của cadimi được ước tính khoảng 18 năm và khoảng 10 năm trong cơ thể con người. Một nguyên nhân khác khiến cho kim loại nặng hết sức độc hại là do chúng có thể chuyển hoá và tích luỹ trong cơ thể con người hay động vật thông qua chuỗi thức ăn của hệ sinh thái. Quá trình này bắt đầu với nồng độ thấp của các kim loại nặng tồn tại trong nước hoặc trong cặn lắng rồi sau đó được tích tụ trong các loài thực vật và động vật sống dưới nước rồi luân chuyển dần qua các mắt xích của chuỗi thức ăn và cuối cùng đến sinh vật bậc cao là con người thì nồng độ kim loại nặng đủ lớn để gây ra độc hại như phá huỷ AND, gây ung thư…. Các kim loại nặng ở hàm lượng nhỏ là những nguyên tố vi lượng hết sức cần thiết cho cơ thể người và sinh vật. Chúng tham gia cấu thành các enzym, các vitamin, đóng vai trò quan trọng trong quá trình trao đổi chất …. Ví dụ một lượng nhỏ đồng rất cần cho động vật và thực vật; người lớn mỗi ngày cần khoảng 20mg đồng (đồng là thành phần quan trọng của các enzym như oxidaza, tirozinara, uriaza, ciocrom, oxidaza, và galatoza ). Nhưng khi hàm lượng kim loại vượt quá ngưỡng quy định sẽ gây ra tác động xấu như nhiễm độc mãn tính, thậm chí là ngộ độc cấp tính dẫn đến tử vong. Về mặt sinh hoá các kim loại nặng có ái lực lớn với các nhóm –SH và nhóm – SCH3 của các enzym trong cơ thể. Vì thế các enzym bị mất hoạt tính làm cản trở quá trình tổng hợp protein của cơ thể.  1.3 Giới thiệu về nguyên tố Niken Trong bảng hệ thống tuần hoàn các nguyên tố hoá học, nguyên tố niken(Ni) nằm ở ô số 28 thuộc phân nhóm phụ, nhóm 8, chu kỳ 4 giữa Co và Cu. Nguyên tử Ni có các obitan d chưa điền đủ 10 electron. Cấu hình electron của Ni (28): [Ar]3d84s2. Niken là kim loại có ánh kim, màu trắng bạc, dễ rèn và dát mỏng.Trong thiên nhiên niken có 5 đồng vị bền: 58Ni(67.7%), 60Ni , 61Ni, 62Ni, 64Ni.Niken có hai dạng thù hình là Ni α lục phương bền ở to 250o C.[3] Bảng 1. Hằng số vật lý quan trọng của Niken [3] Kim loại  Nhiệt độ nóng chảy,oC  Nhiệt độ sôi,oC  Nhiệt thăng hoa,kJ/mol  Tỉ khối  Độ cứng (thang moxơ)  Độ dẫn điện   Ni  1453  3185  424  8.9  5  14   1.3.1 Tính chất hóa học của Niken[3] Ni là kim loại có hoạt tính hóa học trung bình.Ở điều kiện thường nếu không có hơi ẩm ,nó không tác dụng rõ rệt ngay với những nguyên tố không kim loại điển hình như O2 , S, Cl2, Br2 vì có màng oxit bảo vệ. Nhưng khi đun nóng nó phản ứng mãnh nhiệt, nhất là khi Ni ở trạng thái chia nhỏ. Ni tác dụng với phi kim Khi đun nóng ,trong không khí Ni bắt đầu tác dụng ở to > 500o C Ni + O2 → NiO Niken bền với flo ở nhiệt độ cao hay ở nhiệt độ nóng đỏ Niken tác dụng với nitơ ở nhiệt độ không cao lắm Ni + N2 → Ni3N2 Niken tác dụng trực tiếp với khí CO tạo thành cacbonyl kim loại, bền với kiềm ở trạng thái dung dịch và nóng chảy Niken tác dụng với S khi đun nóng nhẹ tạo nên nhưng hợp chất không hợp thức có thành phần gần với NiS. Sự có mặt của S làm giảm chất lượng của thép nên phải loại trừ khi luyện thép. Ni tác dụng với axit tạo muối và giải phóng H2 Ni + HCL → NiCL2 + H2 Ni tinh khiết bền đối với không khí và nước. người ta dùng Ni để mạ ngoài các đồ bằng kim loại. 1.3.2 Tính chất và sự phân bố Niken trong môi trường Hàm lượng Niken trong vỏ trái đất chiếm khoảng 0. 015%. Trong tự nhiên, nó thường tồn tại ở trạng thái hoá trị II với lưu huỳnh và hỗn hợp với ôxit silíc (SiO2), asen, antimon. Khoáng vật quan trọng của Niken là garnierit và pendlranit. Trong than đá và một số trầm tích cũng có chứa một hàm lượng nhỏ Niken. Khoảng 60 - 70 % lượng niken được sử dụng để phủ lên bề mặt kim loại khác hay chế tạo hợp kim. Niken kim loại được sử dụng làm chất xúc tác cho các phản ứng hoá học. Hợp chất Niken được sử dụng trong công nghệ mạ. Hàm lượng niken trong đất có thể đạt 5 – 50 mg/kg. Trong nước thiên nhiên hàm lượng niken thường nhỏ hơn 0, 02mg/l. Trong nước sinh hoạt do quá trình hoà tan niken từ các thiết bị nên hàm lượng niken có thể đạt 1mg/l. Trong thức ăn hàng ngày cũng có chứa niken, lượng xâm nhập vào cơ thể từ 0.1 - 0.3mg/ngày. Nước thải của công nghiệp mạ điện chứa niken với hàm lượng khá lớn. Bụi khí thải của các cơ sở sử dụng than đá cũng có chứa niken, sau đó nó được lắng đọng xuống đất và tích tụ trong nước mặt. Độ hoà tan của muối niken nhìn chung khá cao, khả năng thuỷ phân thấp, độ hoà tan tối thiểu nằm trong vùng pH = 9. Niken là kim loại có tính linh động cao trong môi trường nước, có khả năng tạo phức bền với các hợp chất hữu cơ tự nhiên và tổng hợp. Nó được tích tụ trong các chất sa lắng, trong cơ thể thực vật bậc cao và một số loại thuỷ sinh. 1.3.3 Độc tính của niken[5] Đối với một số gia súc, thực vật, vi sinh vật niken được xem như là nguyên tố vi lượng, còn đối với cơ thể người điều này chưa rõ ràng. Người ta chưa quan sát thấy hiện tượng ngộ độc niken qua đường tiêu hoá từ thức ăn và nước uống. Tiếp xúc lâu dài với niken gây hiện tượng viêm da và có thể xuất hiện dị ứng ở một số người. Ngộ độc niken qua đường hô hấp gây khó chịu, buồn nôn, nếu kéo dài sẽ ảnh hưởng đến phổi, hệ thần kinh trung ương, gan, thận. Kim loại và các hợp chất vô cơ của niken xâm nhập qua đường hô hấp có thể gây bệnh kinh niên. Hợp chất nikencacbonyl có độc tính cao (hơn khí CO 100 lần ). Những nghiên cứu đã cho thấy độc tính đặc biệt cao của nikencacbonyl thể hiện dưới dạng hạt nhỏ, mịn lắng đọng trong phổi. ở điều kiện ẩm của dịch phổi gây kích ứng sưng huyết và phù nề phổi. Giá trị giới hạn cho phép theo TCVN 5945-1995 của niken trong nước thải công nghiệp là 0,2mg/l đối với loại A, 1,0mg/l đối với loại B và 2mg/l đối với loại C. 1.4 Các phương pháp xử lý kim loại nặng Các phương pháp thường dùng dể xử lý kim loại nặng như: phương pháp keo tụ, phương pháp thẩm thấu ngược, phương pháp trao đổi ion, phương pháp chiết, phương pháp đông tụ và keo tụ……Với ưu điểm của phương pháp hấp phụ và phương pháp kết tủa nên chúng tôi đã đề xuất kết hợp cả hai phương pháp hấp phụ và phương pháp kết tủa để xử lý kim loại nặng trong nước thải 1.4.1 Phương pháp kết tủa Kỹ thuật kết tủa kim loại dưới dạng hidroxit được sử dụng phổ biến nhất thu hồi kim loại từ dung dịch. Phản ứng tổng quát như sau: M+ + nOH-→ M (OH)n↓ Rất nhiều hiđroxit của các kim loại kết tủa ở pH từ 7 ÷ 10, dựa vào đó có thể tách chúng ra khỏi dung dịch. Kết tủa tạo thành có thể tách bằng phương pháp đông tụ, sa lắng và lọc. Các tác nhân kết tủa thông dụng là xút và vôi. Tuy nhiên kết tủa hidroxit khá phân tán nên khó thu hồi bằng cách lọc hay sa lắng. Để tách loại thuận tiện người ta thêm vào tác nhân keo tụ. Nhược điểm của quá trình này là quá trình kết tủa hidroxit chỉ là khâu xử lý sơ bộ vì không thể xử lý triệt để. Lượng bùn thải sinh ra lớn và khó quay vòng, giai đoạn làm khô lâu. Cũng có thể kết tủa các kim loại nặng dưới dạng sunfua để thay thế cho kết tủa hidroxit kim loại. Ưu điểm của việc kết tủa sunfua kim loại là các sunfua kim loại có độ tan rất nhỏ cho phép phá vỡ các cân bằng tạo phức và do đó có thể kết tủa sunfua của các kim loại nặng ngay cả khi chúng nằm trong phức chất. Nhưng phương pháp này có nhược điểm là giá thành của chất tạo sunfua (Na2S) tương đối cao, sunfua dư có độc tính khá mạnh. Ngoài ra có thể kết tủa kim loại ở dạng muối cacbonat. Ưu điểm của kết tủa cacbonat so với kết tủa hidroxit là kết tủa cacbonat kim loại thường có trọng lượng riêng lớn hơn và dễ lọc hơn nhưng lại có nhược điểm là khi thay đổi pH độ tan của cacbonat kim loại thay đổi rất lớn so với hidroxit tương ứng 1.4.2 Phương pháp hấp phụ 1.4.2.1 Cơ sở lý thuyết Hấp phụ là phương pháp tách chất, trong đó các cấu tử từ hỗn hợp lỏng hoặc khí hấp phủ trên bề mặt chất rắn, xốp. Hiệu quả hấp phụ phụ thuộc vào tính chất vật lý và hoá học của chất hấp phụ, nồng độ pha lỏng, nhiệt độ của hệ, dạng tiếp xúc và thời gian tiếp xúc Hiện tượng hấp phụ: là hiện tượng giữ lại các chất tan có trong dung dịch trên bề mặt chất rắn khi cho chất rắn tiếp xúc với dung dịch. 1.4.2.2 Đặc điểm của hấp phụ vật lý và hấp phụ hóa học Bảng2 .Bảng so sánh hấp phụ vật lý v à hấp phụ hoá học Hấp phụ vật lý  Hấp phụ hóa học   Là lực Vanderwalls, liên kết này yếu, dễ bị phá vỡ  Là lực liên kết hóa học giữa các phân tử trên bề mặt chất hấp phụ và phần tử chất bị hấp phụ,liên kết này tương đối bền và khó bị phá vỡ   -Đặc điểm: có thể là hấp phụ đơn lớp ,đa lớp  -Đặc điểm: chỉ là hấp phụ đơn lớp   -Tốc độ: không đòi hỏi sự hoạt hóa phân tử nên xảy ra nhanh  Tốc độ: đòi hỏi sự hoạt hóa phân tử nên xảy ra chậm   -Nhiệt độ hấp phụ: xảy ra ở nhiệt độ thấp  Nhiệt độ hấp phụ: xảy ra ở nhiệt độ cao   -Nhiệt hấp phụ: lượng nhiệt tỏa ra trong khoảng từ 2 đến 8 kcal/mol  -Nhiệt hấp phụ: lượng nhiệt tỏa ra lớn hơn 22 kcal/mol   1.4.2.3 Cân bằng hấp phụ và tải trọng hấp phụ Cân bằng hấp phụ:quá trình chất khí hoặc chất lỏng hấp phụ trên bề mặt chất hấp phụ là một quá trình thuận nghịch. Các phần tử chất bị hấp phụ khi đã hấp phụ trên bề mặt chất hấp phụ vẫn có thể di chuyển ngược lại vào pha lỏng hay pha khí. Theo thời gian, lượng chất bị hấp phụ tích tụ trên bề mặt chất rắn càng nhiều thì tốc độ di chuyển ngược lại pha mang càng lớn.Đến một lúc nào đó, tốc độ hấp phụ bằng tốc độ di chuyển ngược lại pha mang (giải hấp) thì quá trình hấp phụ đạt cân bằng. Tải trọng hấp phụ cân bằng: biểu thị khối lượng chất bị hấp phụ trên một đơn vị khối lượng chất hấp phụ tại trạng thái cân bằng dưới các điều kiện nồng độ và nhiệt độ cho trước. Phương trình: q = (Ci – Cf ). V/m Trong đó: V: thể tích dung dịch (ml) m: khối lượng chất hấp phụ (g) Ci nồng độ dung dịch ban đầu (ppm) Cf: nồng độ cân bằng trong dung dịch (ppm) 1.4.2.2 Các mô hình hấp phụ ở trạng thái cân bằng, tốc độ hấp phụ và tốc độ giải hấp là như nhau. Nồng độ chất tan ở trạng thái này gọi là nồng độ cân bằng. Có nhiều phương trình được đưa ra để mô tả sự hấp phụ đẳng nhiệt, điển hình nhất là phương trình hấp phụ langmuir và Frerndlich. 1.4.2.2.1 Mô hình hấp phụ đẳng nhiệt langmuir Một trong những phương trình đẳng nhiệt đầu tiên xây dựng trên cơ sở lý thuyết là của Langmuir (1918). Tiền đề để xây dựng lý thuyết, tức là các giả thuyết gồm: Bề mặt chất hấp phụ đồng nhất về năng lượng. Trên bề mặt chất rắn chia ra từng vùng nhỏ, các tâm hoạt động mỗi vùng chỉ tiếp nhận một phân tử chất bị hấp phụ. Trong trạng thái bị hấp phụ các phân tử trên bề mặt chất rắn không tương tác với nhau. Quá trình hấp phụ là động, tức là quá trình hấp phụ và giải hấp phụ có tốc độ bằng nhau khi trạng thái cân bằng đã đạt được. Tốc độ hấp phụ tỉ lệ với các vùng chưa bị chiếm chỗ (tâm hấp phụ), tốc độ giải hấp phụ tỉ lệ thuận với các tâm đã bị chất bị hấp phụ chiếm chỗ. Phương trình hấp phụ đẳng nhiệt Langmuir: q = qmax q: Tải trọng hấp phụ tại thời điểm cân bằng qmax: Tải trọng hấp phụ cực đại b: Hằng số Khi tích số b.Cf (( 1 thì q = qmax.b.Cf: mô tả vùng hấp phụ tuyến tính Khi tích số b.Cf (( 1 thì q = qmax : mô tả vùng hấp phụ bão hòa Để xác định các hằng số trong phương trình hấp phụ đẳng nhiệt Langmuir có thể sử dụng phương pháp đồ thị bằng cách chuyển phương trình trên thành phương trình đường thẳng:  =.Cf +   Hình 1. Đường hấp phụ đẳng nhiệt Langmuir  Hình 2. Sự phụ thuộc của Cf/q vào Cf   tg( = 1/qmax ON = 1/(b.qmax) 1.4.2.2.2 Mô hình hấp phụ đẳng nhiệt Frendlich Đây là phương trình thực nghiệm có thể sử dụng để mô tả nhiều hệ hấp phụ hóa học hay vật lý. Phương trình này được biểu diễn bằng một hàm mũ: q = k.C1/n Trong đó: k: Hằng số phụ thuộc vào nhiệt độ, diện tích bề mặt và các yếu tố khác n: Hằng số chỉ phụ thuộc vào nhiệt độ và luôn lớn hơn 1 Phương trình Freundlich phản ánh khá tốt số liệu thực nghiệm cho vùng ban đầu và vùng giữa của đường hấp phụ đẳng nhiệt, tức là ở vùng nồng độ thấp của chất bị hấp phụ. Để xác định các hằng số, đưa phương trình trên về dạng đường thẳng: lgq = lgk + lgC Đây là phương trình đường thẳng biểu diễn sự phụ thuộc của lgq vào lgC

Các file đính kèm theo tài liệu này:

  • docxu ly Ni .doc
  • rarDo_an_nuoc_thai_xi_ma.rar
  • docKL nang trong nc.doc
Tài liệu liên quan