Mô hình HRM (High resolution Regional model) đã được tiến hành chạy nghiệp
vụ từ năm 2001 tại Trung tâm Dự báo Khí tượng Thủy văn Trung ương và các sản
phẩm của nó đã ngày càng trở nên quan trọng trong công tác dự báo nghiệp vụ hàng
ngày. Tuy nhiên, hiện nay việc đánh giá khả năng dự báo của mô hình HRM vẫn còn
hạn chế. Các dự báo viên vẫn thường xem xét sản phẩm dự báo số của mô hình theo
kinh nghiệm nên vẫn chưa có hiểu biết một cách hệ thống và đầy đủ về khả năng dự
báo của mô hình, đặc biệt là trong từng hình thế thời tiết cụ thể. Do đó việc sử dụng
sản phẩm của mô hình HRM còn chưa đem lại hiệu quả cao.
Mưa vừa là yếu tố khí tượng vừa là hiện tượng thời tiết được liệt vào hàng các
hiện tượng thời tiết khó dự báo nhất. Không những chỉ khó dự báo mà việc đánh giá dự
báo mưa cũng là một việc hết sức khó khăn và phức tạp. Trước hết khó khăn nằm ngay
trong bản chất trường yếu tố mưa là trường bất liên tục và không cố định cả theo thời
gian lẫn không gian; nhiều đặc trưng thống kê có tính quy luật ở những yếu tố khí
tượng khác, nhưng lại không có ở số liệu mưa, làm cho việc xử lý số liệu mưa cũng rất
phức tạp. Xong dự báo mưa lại có vai trò đặc biệt quan trọng trong phục vụ dự báo,
nhất là phục vụ phòng chống thiên tai. Vì vậy đó là vấn đề quan trọng cần thiết phải
nghiên cứu. Vì vậy, dự báo mưa và đánh giá dự báo mưa là vấn đề quan trọng cần thiết
phải nghiên cứu
142 trang |
Chia sẻ: vietpd | Lượt xem: 1681 | Lượt tải: 2
Bạn đang xem trước 20 trang tài liệu Luận văn Đánh giá sai số hệ thống dự báo mưa của mô hình hrm cho khu vực Đông Bắc Bộ, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
1
§¹I HäC QUèC GIA Hµ NéI
TR¦êNG §¹I HäC KHOA HäC Tù NHI£N
--------------------------------------------------
TRÇN quang n¨ng
®¸nh gi¸ sai sè hÖ thèng dù b¸o ma cña
m« h×nh hrm cho khu vùc ®«ng b¾c bé
LUËN V¡N TH¹C SÜ KHOA HäC
Hµ NéI – 2009
2
§¹I HäC QUèC GIA Hµ NéI
TR¦êNG §¹I HäC KHOA HäC Tù NHI£N
--------------------------------------------------
TRÇN quang n¨ng
®¸nh gi¸ sai sè hÖ thèng dù b¸o ma cña
m« h×nh hrm cho khu vùc ®«ng b¾c bé
Chuyªn ngµnh : KhÝ tîng häc vµ KhÝ hËu häc
M· sè : 60.44.87
LUËN V¡N TH¹C SÜ KHOA HäC
NGƯỜI HƯỚNG DẪN KHOA HỌC:
PGS.TS. nguyÔn v¨n tuyªn
Hµ NéI – 2009
3
MỤC LỤC
MỞ ĐẦU
CHƯƠNG 1. KHÁI QUÁT VỀ MÔ HÌNH HRM VÀ VẤN ĐỀ ĐÁNH GIÁ CHẤT
LƯỢNG DỰ BÁO THỜI TIẾT.......................................................................................1
1.1. Giới thiệu tóm tắt mô hình HRM (High resolution regional model) ở Trung
tâm dự báo KTTV Trung Ương...............................................................................1
1.1.1. Khái quát về mô hình HRM...........................................................................1
1.1.2. Chạy mô hình HRM với các số liệu ban đầu và số liệu biên từ ba mô hình
toàn cầu khác nhau................................................................................................. 2
1.2. Khái quát về bài toán đánh giá chất lượng dự báo thời tiết.......................... 5
1.2.1 Mục đích và ý nghĩa của đánh giá dự báo.....................................................6
1.2.2 Mô hình đánh giá chung cho các yếu tố dự báo thời tiết..............................7
1.2.3 Các yếu tố dự báo.........................................................................................11
1.2.4 Các điểm số dùng trong đánh giá................................................................ 12
1.3 Mô hình đánh giá sản phẩm dự báo số trị.......................................................14
1.4. Các đặc trưng đánh giá....................................................................................17
1.4.1. Độ chính xác................................................................................................17
1.4.2. Kỹ năng dự báo...........................................................................................18
1.4.3 Độ tin cậy....................................................................................................18
1.4.4. Độ phân giải................................................................................................18
1.4.5. Độ biến động...............................................................................................19
1.5. Các phương pháp đánh giá sản phẩm dự báo số...........................................19
1.5.1. Những nguyên nhân sai số dự báo bằng mô hình số...................................19
1.5.2. Một số định nghĩa........................................................................................20
1.5.3. Phương pháp đánh giá với biến liên tục.....................................................22
1.5.4. Phương pháp đánh giá với dự báo pha.......................................................28
4
CHƯƠNG 2. SỐ LIỆU VÀ PHƯƠNG PHÁP ĐÁNH GIÁ DỰ BÁO BÁO MƯA
MÔ HÌNH HRM................................... ........................................ .........................34
2.1. Số liệu.................................................................................................................34
2.1.1 . Số liệu mưa quan trắc và thực tế................................................................34
2.1.2. Số liệu mưa dự báo của mô hình HRM.......................................................37
2.2. Phương pháp đánh giá dự báo mưa của mô hình HRM...............................38
2.2.1 . Đánh giá khi xem mưa là biến liên tục.......................................................38
2.2.2. Đánh giá mưa khi phân lượng mưa ra đa cấp rời rạc................................38
2.2.3. Đánh giá mưa khi phân lượng mưa ra 2 cấp một.......................................41
2.3 Căn cứ phân loại hình thế synốp chính gây mưa khu vực Đông Bắc Bộ......43
2.3.1 . Cơ sở phân loại hình thế synốp và các tác nhân gây mưa khu vực Đông
Bắc Bộ...................................................................................................................43
2.3.2. Đặc trưng và mô phỏng các loại hình thế thời tiết gây mưa ở khu vực Đông
Bắc Bộ...................................................................................................................47
2.4. Thống kê về các ngày có mưa lớn diện rộng và các hình thế gây ra mưa lớn
diện rộng trong ba năm 2005, 2006 và 2007 ở khu vực Đông Bắc Bộ ......................61
CHƯƠNG 3. KẾT QUẢ TÍNH TOÁN VÀ PHÂN TÍCH DỰ BÁO MƯA MÔ
HÌNH HRM...............................................................................................................65
3.1. Các kết quả tính toán........................................................................................65
3.2. Phân tích chất lượng sản phẩm dự báo..........................................................65
3.2.1. Phân tích sai số hệ thống Bias....................................................................66
3.2.2. Về những chỉ tiêu thống kê khác..................................................................76
KẾT LUẬN......................................................................................................................
TÀI LIỆU THAM KHẢO .............................................................................................
5
LỜI CẢM ƠN
Trước hết, tôi xin bày tỏ lòng biết ơn sâu sắc tới PGS. TS. Nguyễn Văn Tuyên -
người đã tận tình chỉ bảo và hướng dẫn tôi hoàn thành luận văn này.
Tôi xin cảm ơn các Thầy cô và các cán bộ trong khoa Khí tượng - Thủy văn -
Hải dương học đã cung cấp cho tôi những kiến thức chuyên môn quý giá, giúp đỡ và
tạo điều kiện thuận lợi về cơ sở vật chất trong suốt thời gian tôi học tập và thực hành ở
Khoa.
Tôi xin cảm ơn các cán bộ phòng Dự báo Khí tượng Hạn ngắn, các cán bộ
phòng Nghiên cứu ứng dụng (Trung tâm dự báo Khí tượng Thủy văn Trung Ương), đặc
biệt là Thạc sĩ Vũ Anh Tuấn và Thạc sĩ Võ Văn Hòa đã tạo điều kiện, trao đổi chuyên
môn cũng như có những ý kiến quý báu giúp tôi hoàn thiện luận văn này.
Tôi cũng xin cảm ơn Phòng sau đại học, Trường Đại học Khoa học Tự nhiên đã
tạo điều kiện cho tôi có thời gian hoàn thành luận văn.
Cuối cùng, tôi xin gửi lời cảm ơn chân thành tới gia đình, người thân và bạn bè,
những người đã luôn ở bên cạnh cổ vũ, động viên và tạo mọi điều kiện tốt nhất cho tôi
trong suốt thời gian học tập tại trường.
Trần Quang Năng
6
MỞ ĐẦU
Mô hình HRM (High resolution Regional model) đã được tiến hành chạy nghiệp
vụ từ năm 2001 tại Trung tâm Dự báo Khí tượng Thủy văn Trung ương và các sản
phẩm của nó đã ngày càng trở nên quan trọng trong công tác dự báo nghiệp vụ hàng
ngày. Tuy nhiên, hiện nay việc đánh giá khả năng dự báo của mô hình HRM vẫn còn
hạn chế. Các dự báo viên vẫn thường xem xét sản phẩm dự báo số của mô hình theo
kinh nghiệm nên vẫn chưa có hiểu biết một cách hệ thống và đầy đủ về khả năng dự
báo của mô hình, đặc biệt là trong từng hình thế thời tiết cụ thể. Do đó việc sử dụng
sản phẩm của mô hình HRM còn chưa đem lại hiệu quả cao.
Mưa vừa là yếu tố khí tượng vừa là hiện tượng thời tiết được liệt vào hàng các
hiện tượng thời tiết khó dự báo nhất. Không những chỉ khó dự báo mà việc đánh giá dự
báo mưa cũng là một việc hết sức khó khăn và phức tạp. Trước hết khó khăn nằm ngay
trong bản chất trường yếu tố mưa là trường bất liên tục và không cố định cả theo thời
gian lẫn không gian; nhiều đặc trưng thống kê có tính quy luật ở những yếu tố khí
tượng khác, nhưng lại không có ở số liệu mưa, làm cho việc xử lý số liệu mưa cũng rất
phức tạp. Xong dự báo mưa lại có vai trò đặc biệt quan trọng trong phục vụ dự báo,
nhất là phục vụ phòng chống thiên tai. Vì vậy đó là vấn đề quan trọng cần thiết phải
nghiên cứu. Vì vậy, dự báo mưa và đánh giá dự báo mưa là vấn đề quan trọng cần thiết
phải nghiên cứu.
Luận văn này tập trung vào việc đánh giá sai số hệ thống dự báo mưa của mô
hình HRM theo không gian và thời gian kết hợp với một số hình thế thời tiết chính gây
mưa, mưa vừa và mưa lớn cho khu vực Đông Bắc Bộ
Bố cục luận văn gồm các phần:
Chương 1: Khái quát về mô hình HRM và vấn đề đánh giá chất lượng dự báo thời tiết.
7
Chương 2: Số liệu và phương pháp đánh giá dự báo mưa mô hình HRM
Chương 3: Kết quả tính toán và phân tích dự báo mưa mô hình HRM
KẾT LUẬN
TÀI LIỆU THAM KHẢO
8
CHƯƠNG 1
KHÁI QUÁT VỀ MÔ HÌNH HRM VÀ VẤN ĐỀ ĐÁNH GIÁ
CHẤT LƯỢNG DỰ BÁO THỜI TIẾT
Chương 1 sẽ xem xét tổng quan về mô hình HRM (High resolution regional
model) đang được chạy nghiệp vụ ở Trung tâm dự báo KTTV Trung Ương (NCHMF)
và vấn đề đánh giá chất lượng dự báo thời tiết nói chung cùng những phương pháp,
điểm số nói riêng trong việc đánh giá các sản phẩm của mô hình dự báo thời tiết số.
1.1 Giới thiệu tóm tắt mô hình HRM (High resolution regional model) ở Trung
tâm dự báo KTTV Trung Ương
1.1.1 Khái quát về mô hình HRM
Mô hình khu vực độ phân giải cao HRM ban đầu được phát triển bởi Cơ quan Khí
tượng Quốc gia Đức (DWD – Deutcher WetterDienst) và được đưa vào sử dụng nghiệp
vụ ở Trung tâm dự báo Khí tượng Thủy văn Trung Ương từ tháng 5 năm 2002, dự báo
cho hai miền chính trong thời hạn 72 giờ. Miền lớn xác định trong khoảng từ 50S –
350N, 800E – 1300E, 161x201 điểm lưới với độ phân giải ngang là 0.250 (28 km), 20
mực thẳng đứng và bước thời gian tích phân là 120s (HRM28). Miền nhỏ hơn xác định
trong khoảng 7.1250N – 27.1250N, 97.250E – 117.250E, 161x161 điểm lưới với độ
phân giải ngang là 0.125 (14 km), 31 mực thẳng đứng, bước thời gian tích phân là 90s
(HRM14); cả hai miền này đều sử dụng số liệu ban đầu và số liệu biên lấy từ mô hình
toàn cầu GME (DWD) 3 giờ một thông qua mạng internet. Trước ngày 27 tháng 9 năm
2004, độ phân giải ngang và thẳng đứng của GME theo thứ tự là 60 km và 31 mực.
Hiện tại, độ phân giải ngang của GME đã tăng lên thành 40 km và độ phân giải thẳng
đứng đã là 40 mực. Mực thấp nhất của GME là 10m.
Mô hình HRM được cung cấp bởi DWD với mã nguồn mở đã trở thành mô hình
đầu tiên chạy dự báo nghiệp vụ tại Trung tâm Khí tượng Thủy văn Quốc gia Việt Nam.
Các sản phẩm của mô hình HRM rất đa dạng và trở thành nguồn tham khảo tốt cho các
dự báo viên trong nghiệp vụ dự báo hàng ngày. Ngoài ra, sản phẩm của nó còn dùng
làm đầu vào, điều kiện ban đầu cho các mô hình khác như: Sóng, nước dâng trong bão,
mô hình thủy văn...
9
Tuy nhiên, sau một thời gian chạy nghiệp vụ, các nhà mô hình Việt Nam đã nhận
ra rằng vẫn còn tồn tại rất nhiều hạn chế trong mô hình HRM, đặc biệt là trong việc thu
số liệu đầu vào từ mô hình toàn cầu GME. Những hạn chế này đã được chỉ ra trong các
trường ban đầu của GME, sơ đồ đồng hóa số liệu sử dụng trong GME và các sơ đồ
tham số hóa vật lý bên trong HRM:
Những tham số bề mặt trong các trường ban đầu của GME không phải thu được
từ quan trắc mà là sản phẩm đầu ra của GME được tích phân từ năm 1994 với số liệu
ban đầu thu được từ trung bình khí hậu
Các trường độ ẩm: Trường độ ẩm cung cấp bởi GME trong nhiều trường hợp
không chính xác, đặc biệt là trong các mùa bão. Các vị trí của của áp thấp nhiệt đới và
bão nhiệt đới thường được xác định sai trong số liệu ban đầu của GME. Điều này xảy
ra là do các số liệu đó thu được từ vệ tinh (Vệ tinh địa cực hay vệ tinh địa tĩnh) và
không được cập nhật liên tục trong suốt quá trình đồng hóa số liệu.
Sơ đồ đồng hóa số liệu trong GME: Nội suy tối ưu ba chiều (3D-OI)
Sơ đồ tham số hóa vật lý trong HRM: Sơ đồ mưa quy mô lưới được tính toán theo
công thức mô phỏng thu được từ quan trắc mây ngoại nhiệt đớ1.
1.1.2 Chạy mô hình HRM với các số liệu ban đầu và số liệu biên từ ba mô
hình toàn cầu khác nhau.
Để sử dụng các mô hình toàn cầu GME, GSM, GFS như là số liệu ban đầu và số
liệu biên cho mô hình HRM đòi hỏi phải có những phân tích cụ thể, cẩn thận về các số
liệu quan trắc, các sơ đồ phân tích và các kĩ thuật ban đầu hóa.
Có một vài sự khác nhau giữa các đặc trưng chính của GME và GSM. Giữa các số
liệu đầu vào của mô hình GSM, các trường ẩm hay các số liệu về ẩm trên đại dương
được tính toán từ ảnh các vệ tinh địa tĩnh (GMS-5 và MTSAT-1R). Những thông tin
này thu được từ vệ tinh không có nhiều giá trị cho tất cả những khu vực trên đại dương
nơi mà các quan trắc truyền thống như SYNOP, TEMP còn thưa thớt. Liên quan đến sơ
10
đồ phân tích khách quan, mô hình GSM có sơ đồ đồng hóa số liệu 4 chiều 4D-VAR
trong các mực của mô hình, trong khi mô hình GME sử dụng sơ đồ nội suy tối ưu
truyền thống và không phức tạp bằng 4D-VAR, nhưng có quá nhiều quan trắc bị “là
trơn”. Địa hình bề mặt cũng đóng một vai trò quan trọng trong một số mô hình sự báo
thời tiết số (NWP). Tuy nhiên, cả mô hình GSM và GME đều cùng sử dụng bộ số liệu
GTOPO30 từ USGS (NWP-hệ thống của DWD 2002).
1.1.2.1 Số liệu cần cho HRM
HRM cần 3 nhóm số liệu:
Nhóm 1: Các trường cố định: fis, gz0, fr_land, soiltyp, Plcov
Nhóm 2: Các trường mực đơn lẻ: ps, t_snow, t_s, t_g, t_m, t_cl, w_snow, w_i, w_gl,
w_g2, w_g3, w_cl, qv_s
Nhóm 3: Các trường đa mực: u, v, t, qv, qc, qi
1.1.2.2 Sử dụng kết hợp số liệu của GME và GSM làm số liệu ban đầu và số liệu
biên cho HRM
Tháng 9 năm 1997, theo hiệp định song phương giữa Trung tâm KTTV Quốc Gia
Việt Nam và Cơ quan khí tượng Nhật Bản, các sản phẩm dự báo và phân tích của mô
hình phổ toàn cầu GSM được cung cấp cho khu vực từ 20 – 600N, 80 – 1600E với độ
phân giải ngang là 1.50x1.50 và 1.250x1.250 trong thời đoạn 72 tiếng. Những trường
phân tích và dự báo từ mô hình GSM này đã được sử dụng trong hoạt động dự báo
nghiệp vụ tại Trung tâm Dự báo KTTV Trung Ương, qua thời gian đã được các dự báo
viên thừa nhận như là một trong những sản phẩm tốt, kết quả gần với thời tiết thực
nhất, đặc biệt đối với những trường hợp có hoàn lưu xoáy thuận xuất hiện trên đại
dương. Ban đầu, mô hình GSM có độ phân giải ngang là 0.56250x0.56250 (xấp xỉ 60
km) và 40 mực thẳng đứng. Tuy nhiên, JMA cung cấp cho một vài trung tâm khí tượng
trong khu vực (bao gồm Việt Nam) số liệu 17 mực áp suất tiêu chuẩn ( 16 mực áp suất
11
và bề mặt) với độ phân giải thô 1.250x1.250. Từ khi JMA cung cấp thêm 5 trường khí
tượng: Nhiệt độ, Nhiệt độ điểm sương, thành phần gió (u,v), khí áp trung bình mực
nước biển và địa thế vị ở 16 mực khí áp. Vì vậy, HRM được chạy với bộ số liệu đầu
vào từ cả GME và GSM: các tham số bề mặt được lấy từ GME, trong khi các tham số
đa mực khác được lấy từ GSM.
1.1.2.3 Số liệu cung cấp bởi JMA
Số liệu ở mực cao không có: mây ở dạng nước (qc), mây ở dạng băng (qi), địa
hình bề mặt và các tham số khác.
Độ phân giải ngang: 1.25x1.250. Miền bao phủ: 60 – 1600E, 200S – 600N.
Các trường đa mực:
- (T – Td): 300, 400, 500, 600, 700, 850, 920, 1000hPa
- T, U, V, H: 0, 20, 30, 50, 70, 100, 150, 200, 250, 300, 400, 500, 700,
850, 920, 1000 hPA
Các trường đơn mực:
(T-Td), T: 2m (Nhiệt độ và nhiệt độ điểm sương tại độ cao 2m)
U, V : 10 m (thành phần gió tại độ cao 10m)
MSLP : Áp suất mực biển trung bình
Vì số liệu của GSM không đủ để chạy mô hình HRM nên Trung tâm dự báo Khí
tượng Thủy văn Trung Ương đã cải tiến và sử dụng cả bộ số liệu của mô hình GME và
GSM:
Số liệu GSM: MSLP, U, V, T, (T – Td) tại bề mặt và 16 mực áp suất, địa thế vị
tại mực 300 hPa
12
Số liệu GME: Các tham số mặt đất (địa hình, độ thô bề mặt, tham số đất, đất bao
phủ, núi…), mây dạng nước (qc), mây dạng băng (qi) tại 31 mực mô hình
1.1.2.4 Số liệu cung cấp bởi GFS (NCEP)
Số liệu GFS được phân bố miễn phí tại server của NCEP tgftp.nws.noaa.gov
+ Miền bao phủ: 360 x 180 điểm lưới, độ phân giải ngang là 10x10.
+ Các tham s b m t, các tr ng c nh, các tham s a m c (26 m c):
- Các tham số đa mực: T, U, V, QV, QC tại 10, 20, 30, 50, 70, 100,
150, 200, 250, 300, 350, 400, 450, 550, 650, 700, 750, 800, 850, 900,
925, 950, 975, 1000 hPa
- Thời hạn dự báo: 00 đến 384 giờ
Trên đây là tổng quan về mô hình khu vực độ phân giải cao HRM đang chạy
nghiệp vụ tại Trung tâm Dự báo Khí tượng Thủy văn Trung Ương. Hiện nay mô hình
này vẫn tiếp tục được cải tiến.
1.2 Khái quát về bài toán đánh giá chất lượng dự báo thời tiết
Đánh giá là sự tính toán ước lượng mối quan hệ giữa tập số liệu dự báo và giá trị
quan trắc. Hoạt động đánh giá chỉ có ích khi ta đưa ra được những kết luận cuối cùng
đối với sản phẩm đang được đánh giá. Những giải pháp này có thể hoặc là sẽ sinh ra
các thay đổi trong các sản phẩm hoặc các phương pháp dự báo hoặc là giải quyết chúng
một cách thỏa đáng. Để đánh giá thì kết quả dự báo phải được trình bày một cách đầy
đủ và khách quan. Trong khi đó thì quan trắc lại được thừa nhận là sự mô tả chính xác
những gì có trong thực tế. Một vài phương pháp đánh giá đòi hỏi giả thiết rằng quan
trắc tại một điểm cũng có thể đại diện cho hiện tượng thời tiết xảy ra trong một vùng.
1.2.1 Mục đích và ý nghĩa của đánh giá dự báo
13
Mục đích của phương pháp đánh giá phải được thiết lập trước khi hệ thống đánh
giá được xác lập vì mục đích đánh giá có quan hệ mật thiết đến việc thiết lập hệ thống
đánh giá.
Theo Barbara Brown (2007), đánh giá chất lượng dự báo thời tiết bao gồm 3
mục đích chính sau đây:
a. Mục đích hành chính
Ban đầu, Cơ quan Khí tượng Canada (1871) sử dụng việc đánh giá để chứng tỏ
với Nghị viện những lợi ích mà công tác dự báo đem lạ1. Đồng thời, thông tin đánh giá
cũng có nhiều ứng dụng mang tính hành chính khác như: Yêu cầu tài trợ các trang thiết
bị như máy tính điện tử, hay quyết định khi nào và có nên thay đổi sản phẩm dự báo
bằng một sản phẩm khác hay một vài cách giải quyết khác. Điều này cũng phụ thuộc
vào sự phát triển của cộng đồng và sự phát triển của các trang thiết bị sử dụng trong
dịch vụ thời tiết. Các câu hỏi đặt ra cho việc đánh giá với những mục đích mang tính
hành chính là: “Liệu độ chính xác của bản dự báo sẽ được cải tiến?” hoặc “Các dự báo
khách quan về nhiệt độ tốt hơn so với dự báo chủ quan hay không?”. Đánh giá hành
chính được sử dụng để kiểm tra thường xuyên chất lượng tổng thể các bản dự báo và
theo dõi những thay đổi về chất lượng của chúng qua từng giai đoạn.
b. Mục đích khoa học
Mục đích khoa học của đánh giá chất lượng dự báo dùng để nhận biết chi tiết
những điểm mạnh và điểm yếu của một sản phẩm dự báo và từ đó có những hành động
tích cực nhằm cải thiện kết quả dự báo. Mặt khác, đánh giá khoa học cũng cung cấp
trực tiếp các thông tin cho hướng nghiên cứu và phát triển phương pháp dự báo
c. Mục đích kinh tế
Theo Brier và Allen (1951), mục đích kinh tế của đánh giá chất lượng dự báo
đóng một vai trò hết sức quan trọng, nó giúp đánh giá được lợi ích của việc dự báo
đúng, từ đó đưa ra được những quyết sách hợp lý trong các hoạt động có liên quan và
14
để thỏa mãn những yêu cầu từ người sử dụng sản phẩm dự báo cuối cùng. Ví dụ, khi có
một bản tin dự báo thời tiết chính xác sẽ giúp ích cho việc bảo vệ người dân trước các
thảm hiện tượng thời tiết nguy hiểm như bão hay lũ lụt hoặc cũng có thể giúp ích rất
nhiều trong các hoạt động sản xuất nông nghiệp…
Vì mục đích kinh tế là vấn đề phức tạp nên trong tiểu mục sau đã bỏ qua không
xem xét.
1.2.2 Mô hình đánh giá chung cho các yếu tố dự báo thời tiết
15
ĐGKH ĐGHC
Phân loại ngoại
bộ
Các tập số liệu dùng
để đánh giá
Phân loại nội
bộ theo quan
trắc
Phân loại nội
bộ theo dự
báo
Phân loại
ngoại bộ
Phân loại
nội bộ
Biến pha Biến
liên tục
Bảng liên
hợp
Nguyên lý phát
hiện tín hiệu
Đồ thị điểm
Biến pha
Biến
liên tục
Biến pha Biến
liên tục
Bảng liên
hợp
Đồ thị điểm
Bảng độ tin
cậy
Điểm
Brier RPS
Điểm kỹ
năng Brier
Sai số trung
bình tuyệt đối
Sai