Kể từ khi con người khám phá ra hiện tượng phóng xạ, một chân trời mới về nghiên cứu các kĩ thuật ghi nhận bức xạ đã được mở ra. Từ đó, việc nghiên cứu các phương pháp ghi nhận trong lãnh vực nghiên cứu hạt nhân, vật lý các hạt cơ bản được tiến hành đã hơn 70 năm nay và ngày càng phát triển mạnh mẽ. Nhìn lại các giai đoạn phát triển của các phương pháp ghi nhận trong vật lý hạt nhân và các hạt cơ bản, chúng ta thấy sự ra đời và phát triển của các loại detector: các buồng bọt, buồng Strimơ, các buồng ion, buồng tỷ lệ, ống đếm Geiger Muller, ống đếm tia lửa, detector nhấp nháy, detector tinh thể Tren-ren-cốp, detector bán dẫn
61 trang |
Chia sẻ: vietpd | Lượt xem: 2406 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Luận văn Khảo sát hiệu suất ghi của detectơ nhấp nháy theo năng lượng bức xạ gamma bằng phương pháp mô phỏng monte carlo, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH
------------------------
LÝ THANH NGUYÊN
KHẢO SÁT HIỆU SUẤT GHI CỦA DETECTƠ NHẤP
NHÁY THEO NĂNG LƯỢNG BỨC XẠ GAMMA
BẰNG PHƯƠNG PHÁP MÔ PHỎNG MONTE CARLO
Chuyên ngành: Vật lý nguyên tử, hạt nhân và năng lượng cao
Mã số: 60.44.05
LUẬN VĂN THẠC SĨ VẬT LÝ
NGƯỜI HƯỚNG DẪN KHOA HỌC:
PGS.TS. NGUYỄN MINH CẢO
Thành phố Hồ Chí Minh - 2010
LỜI CẢM ƠN
Để hoàn thành được luận văn này bản thân tôi đã nhận được sự quan tâm giúp đỡ tận tình và
chu đáo của rất nhiều người. Tôi xin bày tỏ lòng tri ân sâu sắc và trân trọng cảm ơn đến:
Thầy PGS.TS. Nguyễn Minh Cảo, người Thầy kính mến, người đã không những truyền cho tôi
ý tưởng, cung cấp những định hướng và phương pháp nghiên cứu khoa học mà còn dạy bảo tôi về
đạo đức trong nghiên cứu khoa học. Trong quá trình thực hiện luận văn, Thầy là người tận tình chỉ
dẫn giúp tôi gỡ bỏ những khó khăn. Những kinh nghiệm và kiến thức quý báu của Thầy là điều kiện
tiên quyết giúp tôi hoàn thành luận văn này.
Thầy TS. Nguyễn Văn Hùng, người Thầy kính mến. Sự giúp đỡ của Thầy trong giai đoạn đầu
thực hiện luận văn, thiếu thốn về điều kiện thực hiện, là nguồn động viên rất lớn giúp tôi tự tin tiến
hành những nghiên cứu để có thể hoàn thành luận văn.
Thầy ThS Hoàng Đức Tâm, người đã tạo điều kiện thuận lợi cho tôi khi làm thực nghiệm tại
phòng Thí nghiệm. Thầy cũng là người đã có những chỉ dẫn tận tình khi tôi gặp những khó khăn khi
làm việc tại đây.
Cô TS. Trương Thị Hồng Loan và ThS. Trần Thiện Thanh đã có những chỉ bảo tận tình giúp
tôi thấu hiểu về việc mô phỏng bằng MCNP và các vấn đề khác.
Bạn Phạm Nguyễn Thành Vinh và bạn Trịnh Hoài Vinh đã cung cấp tài liệu và hết sức nhiệt
tình giúp đỡ để tôi có thể vào làm thực nghiệm tại phòng Thí nghiệm cũng như tạo điều kiện tốt
nhất khi tôi làm thực nghiệm tại đây.
Ban chủ nhiệm Khoa vật lý trường ĐH Sư phạm TP. Hồ Chí Minh đã tạo điều kiện thuận lợi
về cơ sở vật chất và phòng Thí nghiệm để tôi có thể hoàn thành luận văn.
Cảm ơn cha mẹ đã tần tảo nắng mưa, hi sinh bản thân nuôi nấng và cho con được học hành.
Cảm ơn những người bạn tôi những người luôn động viên giúp đỡ cho tôi.
Tp.Hồ Chí Minh ngày 26 tháng 08 năm 2010
Lý Thanh Nguyên
LỜI CAM ĐOAN
Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi hoặc của Thầy hướng dẫn khoa
học. Kết quả nêu trong luận văn là trung thực và chưa từng ai công bố trong bất kỳ công trình nào
khác.
Tác giả
Lý Thanh Nguyên
BẢNG CÁC CHỮ VIẾT TẮT
Chữ viết tắt Tiếng Việt Tiếng Anh
ACTL Thư viện kích hoạt từ Livemore
EGS4 Chương trình mô phỏng Monte Carlo EGS4 của
nhóm Nelson et al. 1985, Stanford Linear
Accelerator Center.
ENDF Thư viện các số liệu hạt nhân ENDF Evaluated Nuclear Data File
ENDL Thư viện các số liệu hạt nhân ENDL
Evaluated Nuclear Data
Library
FOM Thông số đánh giá độ tin cậy của phương pháp
Monte Carlo
Figure Of Merit
FWHM Full Width at Half Maximum
Ge(Li) Đầu dò germanium “khuếch tán lithium”
GEANT Chương trình mô phỏng Monte Carlo GEANT
của nhóm R. Brun et al. 1986, CERN Data
Handling Division, Geneva.
GEB
Gaussian Energy
Broadenning
HPGe High Purity Germanium
MCG Chương trình Monte-Carlo gamma xử lý các
photon năng lượng cao
Monte Carlo Gamma
MCNG Chương trình Monte-Carlo ghép cặp neutron-
gamma.
Monte Carlo Neutron Gamma
MCN Có thể giải bài toán các neutron tương tác. Monte Carlo Neutron
MCNP Chương trình Monte-Carlo mô phỏng vận
chuyển hạt N của nhóm J.F. Briesmeister, 1997,
Los Alamos National Laboratory Report, LA-
12625-M
Monte Carlo N-particle
NJOY Mã định dạng các thư viện số liệu hạt nhân
trong MCNP
P/C Tỉ số đỉnh/Compton Peak/Compton
P/T Tỉ số đỉnh / toàn phần Peak/Total
REGe Đầu dò germanium điện cực ngược
Reverse Electrode Coaxial
Germanium Detector
MỞ ĐẦU
Kể từ khi con người khám phá ra hiện tượng phóng xạ, một chân trời mới về nghiên cứu các kĩ
thuật ghi nhận bức xạ đã được mở ra. Từ đó, việc nghiên cứu các phương pháp ghi nhận trong lãnh
vực nghiên cứu hạt nhân, vật lý các hạt cơ bản được tiến hành đã hơn 70 năm nay và ngày càng phát
triển mạnh mẽ. Nhìn lại các giai đoạn phát triển của các phương pháp ghi nhận trong vật lý hạt nhân
và các hạt cơ bản, chúng ta thấy sự ra đời và phát triển của các loại detector: các buồng bọt, buồng
Strimơ, các buồng ion, buồng tỷ lệ, ống đếm Geiger Muller, ống đếm tia lửa, detector nhấp nháy,
detector tinh thể Tren-ren-cốp, detector bán dẫn…Có thể nói các detector bán dẫn siêu tinh khiết là
đỉnh cao của việc ghi nhận bức xạ với ưu điểm nổi bật về khả năng phân giải. Tuy nhiên các
detector khác cũng có ưu điểm riêng và những ứng dụng phù hợp với tính chất của nó. Detector
nhấp nháy do Hofstadter phát minh từ năm 1948 tuy không có độ phân giải năng lượng cao nhưng
lại có ưu thế về hiệu suất ghi, khả năng chế tạo ra các hình học đa dạng và kích thước khác nhau đáp
ứng các yêu cầu thí nghiệm.
Mặc dù được phát kiến đã khá lâu nhưng với những ưu điểm của nó, cho đến ngày nay trên thế
giới và ở nước ta, việc ứng dụng detector nhấp nháy vẫn diễn ra hết sức mạnh mẽ trong nhiều lĩnh
vực. Trong lĩnh vực an ninh, detector nhấp nháy được sử dụng trong các thiết bị phát hiện phóng xạ
ở các lối ra vào, các máy phát hiện phóng xạ cầm tay…Trong lĩnh vực an toàn bức xạ và môi
trường, detector nhấp nháy hiện diện trong các máy đo liều, các thiết bị kiểm soát an toàn, trong các
máy dò tìm rác thải độc hại…Bên cạnh đó, detector nhấp nháy còn được sử dụng tích cực trong
lĩnh vực giảng dạy và nghiên cứu hạt nhân. Điều này cho thấy việc nghiên cứu để sử dụng hiệu quả
các detector loại này vẫn hết sức cần thiết.
Năm 2008, Phòng thí nghiệm Vật lý hạt nhân thuộc khoa Vật lý trường Đại học Sư Phạm
Tp.HCM chính thức đi vào hoạt động để phục vụ việc giảng dạy thực hành vật lý hạt nhân. Các thiết
bị được trang bị tại phòng thí nghiệm gồm có một hệ phổ gamma đầu dò Germanium siêu tinh khiết,
hai hệ phổ kế đơn kênh dùng đầu dò nhấp nháy và hệ phổ kế 8k kênh Gamma Rad 76BR76 sử dụng
đầu dò NaI(Tl) kích thước 3 inch x 3 inch. Các thiết bị này đang trong giai đoạn triển khai sử dụng
và do đó việc nghiên cứu các thiết bị này đang được diễn ra tích cực tại phòng thí nghiệm. Phạm vi
của luận văn này hướng tới việc thực hiện nghiên cứu một khía cạnh của hệ phổ kế 8k kênh đầu dò
nhấp nháy NaI(Tl) đó là nghiên cứu sự phụ thuộc của hiệu suất ghi của detector này theo năng
lượng bức xạ gamma với sự hỗ trợ của phương pháp mô phỏng Monte Carlo.
Hiện nay trên thế giới, việc sử dụng phương pháp mô phỏng bằng máy tính để nghiên cứu các
đối tượng vật lý đã trở nên phổ biến và thu được những kết quả nhất định. Trong nước ta đã có
những nghiên cứu áp dụng các phương pháp mô phỏng trong các ngành khoa học và kỹ thuật, đặc
biệt là trong lĩnh vực nghiên cứu vật lý hạt nhân và cũng mang lại các kết quả nhất định. Việc áp
dụng các phương pháp mô phỏng cho thấy sự phù hợp với tình hình khoa học kĩ thuật hiện tại của
đất nước: cơ sở vật chất hạn chế không cho phép thực hiện các nghiên cứu trực tiếp, nhất là trong
lĩnh vực vật lý vi mô. Điều này cũng cho thấy nếu các phương pháp mô phỏng được khai thác tốt sẽ
tạo ra hướng nghiên cứu triển vọng cho lĩnh vực vật lý hạt nhân nói riêng và khoa học kĩ thuật trong
nước nói chung.
Luận văn này hướng tới hai mục tiêu chính là khảo sát sự phụ thuộc của hiệu suất ghi của
detector nhấp nháy theo năng lượng gamma để sử dụng hiệu quả thiết bị này và thông qua quá trình
khảo sát đó nắm bắt được một phương pháp nghiên cứu mới – phương pháp mô phỏng (Monte
Carlo). Trong đó, detector nhấp nháy được khảo sát ở đây có kí hiệu 76BR76 do hãng Amptek (Mỹ)
sản xuất và dãy năng lượng khảo sát được cung cấp bởi bộ nguồn chuẩn RSS8EU do hãng
Spectrum Techniques chế tạo (cả 2 thiết bị này đều thuộc phòng Thí nghiệm vật lí hạt nhân Trường
Đại học Sư Phạm Tp.HCM).
Để thực hiện các mục tiêu trên, phương pháp Monte Carlo được áp dụng thông qua việc mô
phỏng bằng chương trình MCNP4C2. Trong luận văn này, detector nhấp nháy và bố trí hình học đo
được mô hình hóa bằng chương trình MCNP4C2. Song song với mô phỏng các đo đạc thực nghiệm
cũng được tiến hành. Các kết quả mô phỏng và thực nghiệm sẽ được đem ra so sánh với nhau để rút
ra những nhận xét và những định hướng nghiên cứu nhằm cải thiện hiệu quả làm việc của detector.
Bên cạnh phương pháp mô phỏng, phương pháp thực nghiệm và các phương pháp xử lý số liệu như
phương pháp làm khớp bình phương tối thiểu phi tuyến cũng được thực hiện.
Nội dung của luận văn gồm bốn chương:
Chương 1 là phần tổng quan, trình bày về tình hình nghiên cứu trên thế giới và trong nước
trong việc ứng dụng phương pháp mô phỏng Monte Carlo trong nghiên vận chuyển bức xạ và
nghiên cứu detector nhấp nháy; trình bày khái quát về các đặc trưng của bức xạ gamma và khái quát
về các thiết bị ghi nhận bức xạ trong đó đặc biệt quan tâm đến detector nhấp nháy; trình bày về hiệu
suất ghi của detector.
Chương 2 là phần khái quát về phương pháp Monte Carlo, trình bày giới thiệu chương trình
MCNP và các đặc trưng của chương trình mô phỏng vận chuyển bức xạ này.
Chương 3 là phần xây dựng mô phỏng tính toán hiệu suất. Trong chương này, cấu trúc và đặc
điểm của nguồn chuẩn RSS8EU, hệ phổ kế Gamma Rad 76BR76 và detector nhấp nháy NaI(Tl)
kích thước 3 inch x 3 icnh được thể hiện; việc mô hình hóa detector và xây dựng tệp đầu vào của
mô phỏng tính toán hiệu suất được trình bày chi tiết. Trong chương này, việc khảo sát sự phù hợp
của chương trình mô phỏng tính toán hiệu suất detector cũng được thực hiện.
Chương 4 trình bày về kết quả luận văn và những nhận xét. Trong chương này, kết quả hiệu
suất mô phỏng và hiệu suất thực nghiệm nêu ra và so sánh với nhau từ đó nảy sinh các định hướng
nghiên cứu tiếp theo.
CHƯƠNG 1. TỔNG QUAN
1.1. TÌNH HÌNH NGHIÊN CỨU, ỨNG DỤNG PHƯƠNG PHÁP MONTE CARLO TRONG
LĨNH VỰC GHI NHẬN BỨC XẠ HẠT NHÂN
1.1.1. Tình hình nghiên cứu trên thế giới
Năm 1972, Peterman, Hontzeas và Rystephanick [39] đã xây dựng chương trình tính toán các
thông số đặc trưng của detector Ge(Li): hiệu suất đỉnh năng lượng toàn phần, hiệu suất tương đối
của đỉnh thoát kép.
Năm 1975, Grosswendt và Waibel [24] đã xây dựng chương trình tính toán hiệu suất đỉnh
thoát kép đối với detector bán dẫn Ge(Li) dạng planar và dạng hình trụ với thể tích hoạt động 26
cm3 và năng lượng photon từ 100 keV đến 15 MeV. Đồng thời công trình cũng tính toán hiệu suất
đỉnh năng lượng toàn phần của detector có thể tích 42 cm3.
Năm 1982, Gardner và cộng sự [25] đã áp dụng Monte Carlo để mô phỏng phân bố độ cao
xung của tia X và gamma tức thời từ phản ứng bắt neutron đối với hai loại đầu dò Si(Li) và Ge .
Năm 1990, He, Gardner và Verghese [28] đã mở rộng nghiên cứu hàm đáp ứng của đầu dò
Si(Li) tới miền năng lượng 5 keV đến 60 keV.
Năm 1991, Sánchez và cộng sự [42] đề nghị một phương pháp tính toán hiệu suất đỉnh năng
lượng toàn phần có hiệu chỉnh sự tự hấp thụ sử dụng kỹ thuật Monte Carlo với phần mềm GEANT
3. Trong công trình này sự tự hấp thụ được các tác giả nghiên cứu đối với mẫu Petri và Marinelli.
Kết quả công trình cho thấy sự phù hợp tốt với thực nghiệm ( độ lệch lớn nhất là 12,8%).
Năm 1993, Haase, Tail và Wiechen [27] đã triển khai mô phỏng Monte Carlo đối với hệ phổ
kế gamma cho phép tính toán quãng đường đi của photon trong nguồn và đầu dò cũng như hiệu suất
toàn phần. Từ đó hệ số hiệu chỉnh tự hấp thụ và trùng phùng tổng được đánh giá. Hệ số hiệu chỉnh
trùng phùng tổng đối với các nguồn 22Na, 57Co, 60Co và 88Y phù hợp tốt với kết quả thực nghiệm và
các mô hình tính toán khác.
Năm 1997, nhóm Sima và Dovlete [43] bổ sung hiệu ứng matrix trong phép đo hoạt độ mẫu
môi trường.
Năm 2000, nhóm tác giả Talavera, Neder, Daza và Quintana [21] đã sử phần mềm GEANT3
để mô phỏng hàm đáp ứng hệ đầu dò HPGe loại n của hãng Canberra . Từ các tính toán hiệu suất
đỉnh toàn phần các tác giả đã so sánh với thực nghiệm với nhiều hình học đo để phát hiện sự không
chính xác trong mô tả các đặc trưng của detector mà nhà sản xuất cung cấp nhằm xác định lại các
thông số này.
Năm 2001, nhóm tác giả Vidmar, Korun, Likar và cicMartin
[47] đã dùng MCNP và GEANT
để tạo bộ số liệu về đường cong hiệu suất đỉnh năng lượng toàn phần cho hệ đầu dò HPGe loại n và
loại p để kiểm tra mô hình bán thực nghiệm cho việc xây dựng đường cong hiệu suất cho các đầu dò
này trong khoảng năng lượng từ 4 keV đến 3000 keV ; trong đó có quan tâm đến hiệu ứng tự hấp
thụ đối với mẫu đo thể tích.
Năm 2002, Tsutsumi, Oishi, Kinouchi, Sakamoto và Yoshida [45] đã ứng dụng chương trình
mô phỏng Monte Carlo EGS-4 để tính toán mô phỏng và nghiên cứu thiết kế hệ phổ kế gamma
dùng detector HPGe triệt Compton được sử dụng trong việc xác định hoạt độ của mẫu đo mà bản
thân nó là nguồn phông đáng kể
Năm 2004, Hurtado, GarcíaLeón và García Tenorio [32] bằng chương trình mô phỏng Monte
Carlo GEANT4 đã xây dựng đường cong hiệu suất đặc trưng của detector REGe (Reverse Electrode
Germanium) và khi tiến hành hiệu chỉnh một số thông số vật lý của detector được nhà sản xuất cung
cấp trong tính toán đã làm cho hiệu suất tính toán phù hợp với hiệu suất thực nghiệm.
Năm 2006, Salgado, Conti và Becker [17] đã tính toán các đặc trưng của detector HPGe kiểu
planar bằng chương trình mô phỏng Monte Carlo MCNP5 đối với các tia X trong miền năng lượng
20 keV - 150 keV và đã phát hiện có sự khác biệt về hiệu suất detector giữa tính toán và thực
nghiệm khoảng 10%. Sự khác biết trên được lý giải bởi bề dày lớp chết mà nhà sản xuất cung cấp là
không chính xác và các tác giả đã thực hiện hiệu chỉnh tăng bề dày lớp chết.
Năm 2007, Hoover [31] đã sử dụng GEANT4 xác định đặc trưng của hiệu ứng đầu dò điểm ảo
đối với các đầu dò HPGe đồng trục. Khái niệm đầu dò điểm ảo để mô tả mối quan hệ phức tạp giữa
hiệu suất đầu dò, dạng đầu dò, và khoảng cách nguồn. Trong công trình này mô phỏng Monte Carlo
thể hiện rõ ưu thế của nó là tiết kiệm được thời gian và công sức. Mô phỏng Monte Carlo cho phép
đặc trưng hóa hiệu ứng điểm ảo khắp trong khoảng năng lượng khảo sát của đầu dò. Nó có cho phép
mở rộng ở những miền năng lượng cao mà việc sử dụng thực nghiệm với các nguồn chuẩn thích
hợp là khó đạt được.
Martin [36] đã dùng MCNP4C2 để mô phỏng hai hệ đầu dò Germanium đồng trục: REGe và
XtRa. Sự sai biệt lớn 10-20% giá trị hiệu suất mô phỏng so với thực nghiệm ở các năng lượng
photon khác nhau và hình học đo khác nhau cho thấy cần phải điều chỉnh thông số đầu dò từ nhà
sản xuất. Để có được thông tin chính xác tác giả đã dùng phương pháp quét (scanning) với chùm
bức xạ photon không chuẩn trực. Mô hình Monte Carlo hệ đầu dò sau đó được điều chỉnh các thông
số theo phương pháp thử và sai cho đến khi cho kết quả hiệu suất phù hợp nhất với thực nghiệm .
Huy N.Q, Binh D.Q, An V.X [34] nghiên cứu sự tăng của bề dày lớp bất hoạt trong đầu dò
Germanium siêu tinh khiết sau một khoảng thời gian dài hoạt động bằng chương trình mô phỏng
MCNP.
1.1.2. Tình hình nghiên cứu ở Việt Nam.
Ở nước ta, phương pháp Monte Carlo trong vận chuyển bức xạ cũng được triển khai và ứng
dụng khá rộng trong các cơ sở nghiên cứu vật lý hạt nhân.
Ở Viện Khoa học và Kĩ thuật hạt nhân Hà Nội, có nhóm Lê Văn Ngọc, Nguyễn Thị Thanh
Huyền, Nguyễn Hào Quang nghiên cứu về tính toán hiệu suất đỉnh cho hệ phổ kế gamma môi
trường ký hiệu GMX có tại Viện bằng chương trình mô phỏng MCNP phiên bản 4C2; Hoàng Hoa
Mai, Lê Văn Ngọc, Nguyễn Đình Dương nghiên cứu phân bố liều của thiết bị chiếu xạ tại trung tâm
chiếu xạ Hà nội bằng phần mềm MCNP và phương pháp mô phỏng Monte Carlo.
Ở Viện Vật lý và Điện tử (Viện Khoa học và Công nghệ Việt Nam), có nhóm Lê Hồng Khiêm,
Nguyễn Văn Đỗ, Phạm Đức Khuê xây dựng chương trình mô phỏng Monte Carlo để nghiên cứu về
chuẩn hiệu suất cho hình học mẫu lớn trong phép đo bức xạ; Lê Hồng Khiêm, Nguyễn Tuấn Khải
xây dựng chương trình mô phỏng Monte Carlo để tái tạo ảnh cho vật sử dụng hiệu ứng tán xạ ngược
Compton; Bùi Thanh Lan, Lê Hồng Khiêm, Chu Đình Thúy, Nguyễn Quang Hùng biến đổi ngược
mô phỏng Monte Carlo để xác định tính chất hấp thụ và tán xạ; Bùi Thanh Lan, Lê Hồng Khiêm,
Chu Đình Thúy mô phỏng Monte Carlo về sự dập tắt phổ.
Ở Viện NCHN Đà Lạt có nhóm Hồ Hữu Thắng, Nguyễn Xuân Hải, Trần Tuấn Anh, Nguyễn
Kiên Cường áp dụng chương trình MCNP4C2 xác định cấu hình che chắn tối ưu trong thiết kế dẫn
dòng và giảm phông cho hệ phổ kế cộng biên độ các xung trùng phùng tại kênh ngang số 3 lò phản
ứng hạt nhân Đà lạt .
Trung tâm Nghiên cứu &Triển khai Công nghệ Bức xạ thành phố Hồ Chí Minh có nhóm Trần
Khắc Ân, Trần Văn Hùng, Cao Văn Chung sử dụng phần mềm MCNP4C xác định vị trí liều cực
tiểu trong thùng hàng ở các tỷ trọng hàng chiếu khác nhau phục vụ công tác vận hành máy chiếu xạ
STSV-Co60/B tại trung tâm.
Ở Phân viện Y Sinh Tp.HCM và Chợ Rẫy có nhóm Nguyễn Đông Sơn, Nguyễn thị Bích Loan,
Trần Cương áp dụng Monte Carlo để tính toán phân bố liều trong phantom nước đối với chùm
photon 6MV từ máy gia tốc tại bệnh viện Chợ Rẫy.
Ở Đại học Công nghiệp Tp.HCM và Trung tâm Hạt nhân Tp.HCM có nhóm Ngô Quang Huy,
Đỗ Quang Bình, Võ Xuân Ân nghiên cứu về phổ và tối ưu hiệu suất của hệ phổ kế gamma đầu dò
HPGe đặt tại Trung tâm Hạt nhân Tp.HCM bằng MCNP4C2
Ở Bộ môn Vật lý Hạt nhân, Trường Đại học Khoa học Tự nhiên Tp.HCM có nhóm Mai Văn
Nhơn, Trương Thị Hồng Loan, Đặng Nguyên Phương, Trần Ái Khanh, Trần Thiện Thanh sử dụng
phương pháp Monte Carlo với chương trình MCNP4C2 và MCNP5 để nghiên cứu chuẩn hiệu suất
và đặc trưng đáp ứng của đầu dò HPGe có tại Phòng thí nghiệm Bộ môn Vật lý Hạt nhân, Trường
Đại học Khoa học Tự nhiên Tp.HCM.
1.1.3. Phương pháp Monte Carlo trong nghiên cứu các đặc trưng của detector nhấp nháy
Năm 1966, Snyder và Knoll [44] đã tính toán tỷ số photon hấp tụ toàn phần trong detector
nhấp nháy hình giếng đối với các chất nhấp nháy khác nhau gồm: NaI, CsI, CaI2 với thể tích khác
nhau.
Năm 1972, Beattie và Byrne [15] đã xây dựng chương trình mô phỏng đánh giá các đặc trưng
của detector nhấp nháy NaI(Tl) với nguồn gamma đơn năng và phân tích phổ bức xạ hãm
bremsstrahlung.
Năm 1973, Grosswendt [23] đã xây dựng chương trình tính toán hiệu suất phát hãm
bremsstrahlung do tán xạ của electron thứ cấp với hạt nhân nguyên tử đối với các detector NaI, CeI,
Si và Ge.
Năm 1974, Belluscio, De Leo, Pantaleo và Vox [16] đã xây dựng chương trình tính toán đối
với detector nhấp nháy NaI(Tl) và nguồn gamma dày năng lượng lên đến 10 MeV và tất cả đều có
dạng hình trụ để tính toán một số đặc trưng gồm phân bố năng lượng theo độ cao xung, hiệu suất
đỉnh năng lượng toàn phần và hiệu suất toàn phần của detector và đối với các hình học đo giữa
nguồn và detector khác nhau.
Năm 1976, Rieppo [40] đã áp dụng phương pháp Monte Carlo trong việc tính toán sự hấp thụ
tia gamma trong nguồn thể tích đối với đầu dò mặt và giếng dùng tinh thể NaI. Sự hấp thụ của
gamma trong môi trường gồm nước, nhôm và chì cũng được khảo sát.
Năm 2000, Ghanem [22] đã xây dựng chương trình tính toán các thông số đặc trưng của
detector nhấp nháy NaI gồm đỉnh năng lượng toàn phần, đỉnh thoát đơn, đỉnh thoát kép,…. Tawara,
Sasaki, Saito và Shibamura đã ứng dụng chương trình EGS-4 trong nghiên cứu các tính chất đặc
trưng của detector nhấp nháy NaI(Tl) dựa trên cơ sở phổ gamma của nguồn 137Ce.
Năm 2000, Orion và Wielopolski [38] đã nghiên cứu hàm đáp ứng của phổ gamma dùng
detector nhấp nháy BGO và NaI(Tl) tại các giá trị năng lượng 0.662, 4.4 và 10MeV. Trong công
trình này có sử dụng ba chương trình mô phỏng Monte Carlo là EGS-4, MCNP4B và PHOTON.
Năm 2001 Yoo, Chunand và Ha [46] đã sử dụng EGS4 mô phỏng hàm đáp ứng của hai đầu dò
NaI và HPGe đối với tia tới năng lượng lên đến 662 keV. Sau đó sử dụng phổ tính toán để giải cuộn
phổ đo.
Năm 2002, Henndriks,