Tiện cứng là nguyên công tiện các chi tiết đã qua tôi (thường là thép
hợp kim) có độ cứng cao khoảng từ 40 ÷ 65 HRC được sử dụng rộng rãi trong
công nghiệp ô tô, chế tạo bánh răng, vòng ổ, dụng cụ, khuôn mẫu vv Tiện
cứng được sử dụng thay mài khi gia công chính xác các chi tiết máy có tỉ số
chiều dài trên đường kính nhỏ, các chi tiết có hình dáng phức tạp và không
nhất thiết phải sử dụng dung dịch trơn nguội. Tiện cứng cho độ chính xác và
nhám bề mặt tương đương với mài nhưng tiện cứng có khả năng tạo nên lớp
bề mặt có ứng suất dư nén làm tăng tuổi thọ về mỏi của chi tiết máy trong các
tiếp xúc lăn khi sử dụng, cho năng suất cao hơn mài với đầu tư ban đầu thấp
hơn nhiều. Tiện cứng thường dùng trong nguyên công tiện tinh với độ chính
xác ngang mài nên các yêu cầu về độ chính xác, độ cứng vững của hệ thống
công nghệ rất khắt khe.
Vật liệu thường sử dụng làm dao tiện cứng là CBN (Cubic nitrit Bo).
Đây là loại vật liệu tổng hợp sử dụng các hạt CBN với chất gắn kết là TiC
hoặc kim loại như Co.
Khi sử dụng mảnh dao với hàm lượng CBN thấp (CBN – L) và cao
(CBN – H), mòn xuất hiện trên cả mặt trước và sau với ba cơ chế mòn khác
nhau là mòn do dính, mòn do cào x ước và mòn do nhiệt, trong đó mòn do
nhiệt là cơ chế mòn chính. Mòn ảnh hưởng trực tiếp đến nhám bề mặt chi tiết
gia công, do vậy nó phải được nghiên cúu để nắm vững và điều khiển nhằm
giảm tác động của nó và nâng cao chất lượng của quá trình cắt gọt. Mòn của
dụng cụ cắt là hiện tượng lý hoá phức tạp trong quá trình gia công cắt gọt các
vật liệu. Cũng như mòn của các chi tiết máy, mòn của dụng cụ làm thay đổi
các thông số hình học dụng cụ và giảm tuổi bền cũng như khả năng làm việc
của dụng cụ. Mòn của dụng cụ còn ảnh hưởng trực tiếp đến chất lượng và độ
chính xác của bề mặt gia công. Đối với quá trình gia công loạt lớn và tự động
hoá, độ mòn và tuổi bền của dụng cụ lại càng được quan tâm và chú ý hơn do
các ảnh hưởng của nó tới năng suất và chất lượng của sản phẩm chế tạo. Do
vậy, việc nghiên cứu quá trình mòn khi tiện cứng để nâng cao khả năng làm
việc, nâng cao chất lượng bề mặt gia công là cần thiết đối với ngành cơ khí.
Khi tiện thép nhiệt luyện bằng dao nitritbo xuất hiện lực cắt đơn vị lớn,
do đó ở vùng tiếp xúc nhiệt độ cắt tăng cao, gây ảnh hưởng đến tuổi bền của
dao và chất lượng lớp bề mặt của chi tiết gia công.
Xét về mặt mài mòn của dụng cụ cắt cần quan tâm tới nhiệt độlớn nhất
trên mặt trước và mặt sau, sự phân bố nhiệt trên các bề mặt này. Nhưng việc
xác định nhiệt độ lớn nhất này rất khó khăn. Mặt khác nhiệt độcắt chịu ảnh
hưởng của vận tốc cắt lớn hơn so với lượng chạy dao. Khi tiện tinh, chiều sâu
cắt nhỏ, vận tốc cắt lớn, áp lực lên dao nhỏ, nhiệt độtập trung ở vùng mũi dao
cao nên làm dao bị mềm ra và cùn nhanh.
Ảnh hưởng của vận tốc cắt đến cơ chế mòn như thế nào khi tiện tinh
thép hợp kim dụng cụ 9XC qua tôi một loại vật liệu có nhiều ưu điểm được
dùng rộng rãi nhất để chế tạo dụng cụ cắt với vận tốc thấp nhằm thoả mãn các
yêu cầu về khả năng làm việc đang là yêu cầu cần thiết của các nhà sản xuât.
Do vậy đề tài: “Nghiên cứu ảnh hưởng của vận tốc cắt tới cơ chế
mòn dụng cụ PCBN sử dụng tiện tinh thép 9XC qua tôi” là cần thiết và
cấp bách.
105 trang |
Chia sẻ: oanhnt | Lượt xem: 1691 | Lượt tải: 1
Bạn đang xem trước 20 trang tài liệu Luận văn Nghiên cứu ảnh hưởng của vận tốc cắt tới cơ chế mòn dụng cụ PCBN sử dụng tiện tinh thép 9XC qua tôi, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP
---------------------------------------
LUẬN VĂN THẠC SĨ KỸ THUẬT
NGHIÊN CỨU ẢNH HƯỞNG CỦA VẬN TỐC CẮT
TỚI CƠ CHẾ MÒN DỤNG CỤ PCBN SỬ DỤNG
TIỆNTINH THÉP 9XC QUA TÔI
Ngành : CÔNG NGHỆ CHẾ TẠO MÁY
Mã số : 11120611008
Học viên : NGUYỄN THỊ THANH VÂN
Người hướng dẫn Khoa học:
PGS.TS. PHAN QUANG THẾ
THÁI NGUYÊN - 2009
ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP
-------------------------------------
LUẬN VĂN THẠC SĨ KỸ THUẬT
Họ và tên học viên : NGUYỄN THỊ THANH VÂN
Giáo viên hướng dẫn : PGS.TS. PHAN QUANG THẾ
Tên đề tài : Nghiên cứu ảnh hưởng của vận tốc cắt tới cơ chế mòn
dụng cụ PCBN sử dụng tiện tinh thép 9XC qua tôi.
Chuyên ngành : CÔNG NGHỆ CHẾ TẠO MÁY
Ngày giao đề tài :
Ngày hoàn thành :
Khoa đào tạo
sau đại học
Ts Nguyễn Văn Hùng
Người hướng dẫn
khoa học
PGS.TS Phan Quang Thế
Học viên
KS. Nguyễn Thị Thanh Vân
LỜI CẢM ƠN
Với lòng biết ơn sâu sắc, tôi xin trân trọng cảm ơn:
Thầy giáo PGS.TS Phan Quang Thế - Thầy hướng dẫn khoa học của tôi về
sự định hướng đề tài, sự hướng dẫn tận tình của Thầy trong việc tiếp cận
và khai thác các tài liệu cũng như những chỉ bảo trong quá trình tôi làm
thực nghiệm và viết luận văn.
Tôi xin bày tỏ lòng biết ơn tới:
Thầy giáo ThS. Lê Viết Bảo – Cô giáo ThS. Nguyễn Thị Quốc Dung
đã tạo điều kiện hết sức thuận lợi cho tôi được tiến hành thí nghiệm tại
xưởng sản xuất và trong suốt quá trình hoàn thành luận văn này.
Tôi cũng xin gửi lời cảm ơn c án bộ phụ trách phòng thí nghiệm
Quang phổ khoa Vật lý trường ĐHSP Thái Nguyên; cán bộ phòng kỹ thuật
và xưởng Nhiệt luyện công ty phụ tùng số 1; cán bộ, nhân viên xưởng cơ
khí nơi tôi tiến hành thực nghiệm; cán bộ phòng thí nghiệm khoa cơ khí –
ĐHKTCN đã dành cho tôi những điều kiện thuận lợi nhất, giúp tôi hoàn
thành nghiên cứu của mình.
Tôi cũng xin gửi lời cảm ơn Trường Cao đẳng nghề Cơ điện-Luyện
kim Thái Nguyên nơi tôi đang công tác đã tạo điều kiện cho tôi được học
tập nâng cao trình độ, mở mang kiến thức.
Cuối cùng tôi xin gửi lời cảm ơn tới gia đình và bạn bè, đồng nghiệp
đã ủng hộ, động viên, giúp đỡ tôi trong suốt thời gian thực hiện luận văn
này.
Thái Nguyên, tháng 4 năm 2009
Học viên
Nguyễn Thị Thanh Vân
MỤC LỤC
Lời cảm ơn
Mụclục
Danh mục các ký hiệu
Danh mục các chữ viết tắt
Danh mục các hình vẽ và đồ thị
Danh mục các bảng biểu
PHẦN MỞ ĐẦU 1
1. Tính cấp thiết của đề tài 1
2. Nội dung nghiên cứu 2
3. Phương pháp nghiên cứu. 3
4. Dự định kết quả 3
CHƯƠNG I : BẢN CHẤT VẬT LÝ CỦA QUẢ TRÌNH CẮT VÀ MÒN
DỤNG CỤ
4
1.1. Bản chất vật lý 4
1.1.1. Quá trình cắt và tạo phoi 4
1.1.2. Đặc điểm quá trình tạo phoi khi tiện cứng 11
1.2. Lực cắt khi tiện 14
1.2.1. Lực cắt khi tiện và các thành phần lực cắt 14
1.2.2 Các yếu tố ảnh hưởng đến lực cắt khi tiện 18
1.2.2.1. Ảnh hưởng của vận tốc cắt 18
1.2.2.2. Ảnh hưởng của lượng chạy dao và chiều sâu cắt 20
1.2.2.3. Ảnh hưởng của vât liệu gia công 20
1.2.2.4. Ảnh hưởng của vật liệu làm dao và đặc điểm của vật liệu CBN
khi tiện cứng
21
1.2.2.5. Ảnh hưởng của bán kính đỉnh dao r 23
1.2.2.6. Ảnh hưởng của mòn dụng cụ cắt 24
1.3. Nhiệt cắt 24
1.3.1. Khái niệm chung 24
1.3.2. Trường nhiệt độ 29
1.3.3. Quá trình phát sinh nhiệt 32
1.3.3.1. Nhiệt trong vùng biến dạng thứ nhất 32
1.3.3.2. Nhiệt trên mặt nước (QAC) và trường nhiệt độ 33
1.3.3.3. Nhiệt trên mặt tiếp xúc giữa mặt sau và bề mặt gia công (QAD) và
trường nhiệt độ
34
1.3.3.4. Ảnh hưởng của vận tốc cắt tới nhiệt cắt và trường nhiệt độ trong
dụng cụ
35
1.4. Kết luận 36
1.5. Mòn dụng cụ cắt 37
1.5.1. Dạng mòn 37
1.5.2. Các cơ chế mòn cơ bản của dụng cụ cắt 41
1.5.2.1 Mòn do dính 42
1.5.5.2. Mòn do hạt mài 43
1.5.5.3. Mòn do khuếch tán 44
1.5.2.4. Mòn do ôxy hóa 45
1.6. Mòn dụng cụ PCBN 45
CHƯƠNG II : NGHIÊN CỨU THỰC NGHIỆM VỀ MÒN DỤNG CỤ
PCBN VÀ NHÁM BỀ MẶT
54
2.1. Thí nghiệm 54
2.1.1. Yêu cầu đối với hệ thống thí nghiệm 54
2.1.2. Mô hình thí nghiệm 54
2.1.3. Thiết bị thí nghiệm 55
2.1.3.1. Máy 55
2.1.3.2. Dao 55
2.1.3.3. Phôi 56
2.1.3.4. Chế độ cắt 57
2.1.3.5. Thiết bị đo nhám bề mặt 58
2.1.3.6. Thiết bị phân tích bề mặt và kim tương 58
2.2. Trình tự thí nghiệm 58
2.3. Kết quả thí nghiệm 59
2.3.1. Tương tác ma sát giữ a phoi và mặt trước 59
2.3.2. Tương tác ma sát giữa phoi và mặt sau dụng cụ 64
2.3.3. Kết luận 64
2.4. Mòn dụng cụ PCBN và nhám bề mặt 64
2.4.1. Phân tích thí nghiệm 64
2.4.2. Kết quả thí nghiệm mòn dụng cụ PCBN 65
2.4.3. Thảo luận kết quả 69
2.4.4. Kết luận 71
CHƯƠNG III: NGHIÊN CỨU THỰC NGHIỆM VỀ ẢNH HƯỞNG
CỦA VẬN TỐC CẮT ĐẾN CƠ CHẾ MÒN DỤNG CỤ PCBN
72
3.1. Nghiên cứu thực nghiệm 72
3.2. Thí nghiệm 72
3.2.1. Thiết bị thí nghiệm và dụng cụ đo 72
3.2.2. Trình tự thí nghiệm 73
3.3. Kết quả thí nghiệm 73
3.4. Phân tích kết quả thí nghiệm 78
3.5. Phương trình hồi quy 80
3.6. Kết luận 84
CHƯƠNG IV: KẾT LUẬN CHUNG VÀ PHƯƠNG PHÁP NGHIÊN
CỨU TIẾP THEO CỦA ĐỀ TÀI
85
4.1. Kết luận chung 85
4.2. Phương pháp nghiên cứu tiếp theo 86
TÀI LIỆU THAM KHẢO 87
DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT
a: chiều dày lớp kim loại bị cắt
ap: chiều dày phoi
Kf: mức độ biến dạng của phoi
Kbd: mức độ biến dạng của phoi trong miền tạo phoi
Kms: mức độ biến dạng của phoi do ma sát với mặt trước của dao
θ : góc trượt
r: bán kính mũi dao
γ (hayγ n) : góc trước của dao
Pz (hay Pc): lực tiếp tuyến khi tiện
Py (hay Pp): lực hướng kính khi tiện
Px: lực chiều trục khi tiện
S: lượng chạy dao (mm/vòng)
t: chiều sâu cắt (mm)
V: vận tốc cắt (m/phút)
Q: tổng nhiệt lượng sinh ra trong quá trình cắt
QAB = Q1: nhiệt sinh ra trên mặt phẳng trượt
QAC = Q2: nhiệt sinh ra trên mặt trước
QAD = Q3: nhiệt sinh ra trên mặt sau
Qphoi: nhiệt truyền vào phoi
Qdao: nhiệt truyền vào dao
Qmôi trường: nhiệt truyền vào môi trường
Qphôi: nhiệt truyền vào phôi
KAB: ứng suất cắt trung bình trong miền biến dạng thứ nhất
As: diện tích của mặt phẳng cắt
Vs: vận tốc của vật liệu cắt trên mặt phẳng cắt
kt: hệ số dẫn nhiệt của vật liệu gia công
β: hệ số phân bố nhiệt từ mặt phẳng trượt vào phôi và phoi
c: nhiệt dung riêng
ρ: tỷ trọng của vật liệu
RT: hệ số nhiệt khi cắt
Ф: góc tạo phoi
γm: tốc độ biến dạng của các lớp phoi gần mặt trước
δt: chiều dày của vùng biến dạng thứ hai
K: hệ số thẩm nhiệt
ΔFc, ΔFt: áp lực tiếp tuyến và pháp tuyến trên vùng mòn mặt sau
Fcf, Ftf: lực cắt tiếp tuyến và pháp tuyến đo khi mòn dao
VBave: chiều cao trung bình của vùng mòn mặt sau
τs: ứng suất tiếp trên vùng mòn mặt sau
Kc, Kt: các hệ số thực nghiệm
µ: hệ số ma sát trên vùng ma sát thông thường của mặt trước
µf: hệ số ma sát trên mặt sau
b: hệ số truyền nhiệt
θo: nhiệt cắt
Cl: hệ số phụ thuộc vào điều kiện gia công
u: số mũ biểu thị ảnh hưởng của vận tốc cắt đến nhiệt cắt
φ: góc nghiêng chính
φ1: góc nghiêng phụ
Vw: thể tích mòn mặt sau
Vcr: thể tích mòn mặt trước
KB, KF, KT: các kích thước vùng mòn mặt trước
hs: độ mòn giới hạn
Ra, Rz: độ nhám bề mặt khi tiện
DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ
Hình 1.1: Sơ đồ miền tạo phoi ......................................................................... 5
Hình 1.2: Miền tạo phoi ................................................................................... 6
Hình 1.3: Miền tạo phoi ứng với vận tốc cắt khác nhau .................................. 8
Hình 1.4: Tính góc trượt θ.............................. Error! Bookmark not defined.
Hình 1.5: Quan hệ giữa vận tốc cắt và biến dạng của phoi. Error! Bookmark
not defined.
Hình 1.6: Quan hệ giữa bán kính mũi dao r và biến dạng của phoi ........ Error!
Bookmark not defined.
Hình 1.7: Ba giai đoạn hình thành phoi khi tiện thép 100Cr6 với .......... Error!
Bookmark not defined.
V = 100 m/p; s = 0,1mm/v; t = 1mm; môi trường cắt khô. . Error! Bookmark
not defined.
Hình 1.8: Dạng của phoi trong mối liên hệ với độ cứng của phôi .......... Error!
Bookmark not defined.
và vận tốc cắt ................................................... Error! Bookmark not defined.
Hình 1.9: Hệ thống lực cắt khi tiện ................ Error! Bookmark not defined.
Hình 1.10: Mối quan hệ giữa lực cắt và chiều dài cắt khi tiện thép thấm
Các bon, Ni tơ tôi cứng đến 60 HRC bằng dao PCBN .. Error! Bookmark not
defined.
với γ = - 6o và α = 0o. .................................... Error! Bookmark not defined.
Hình 1.11: Ảnh hưởng của vận tốc cắt tới lực cắt ........ Error! Bookmark not
defined.
Hình 1.12: Cấu trúc tế vi của hai loại mảnh dao (BZN6000 – 92% CBN –
High CBN) và (BZN8100 – 70% CBN – Low CBN) [13]. . Error! Bookmark
not defined.
Hình 1.13: Ảnh hưởng của bán kính đỉnh dao tới lực cắt ... Error! Bookmark
not defined.
Hình 1.14: ....................................................................................................... 28
(a) Sơ đồ hướng các nguồn nhiệt. ................................................................... 28
(b) Ba nguồn nhiệt và sơ đồ truyền nhiệt trong cắt kim loại. ......................... 28
Hình 1.15 : Tỷ lệ % nhiệt truyền vào phoi, phôi, dao và môi trường ........... 29
phụ thuộc vào vận tốc cắt [6] .......................................................................... 29
Hình 1.16: Trường nhiệt độ khi tiện .............................................................. 30
Đường nét liền: Đường đẳng nhiệt; đường nét đứt: Dòng nhiệt.Dòng nhiệt
vuông góc với đường đẳng nhiệt. .................................................................... 30
Hình 1.17: Sự phân bố nhiệt độ khi tiện trên mặt phân cách phoi - dụng cụ 31
Hình 1.18: Đường cong thực nghiệm của Boothroyd .. Error! Bookmark not
defined.
để xác định tỷ lệ nhiệt (β) truyền vào phôi [11]. ........... Error! Bookmark not
defined.
Hình 1.19: Sơ đồ phân bố ứng suất trên mặt sau mòn .. Error! Bookmark not
defined.
Hình 1.20 : Ảnh hưởng của vận tốc cắt tới nhiệt độ cắt .... Error! Bookmark
not defined.
1. Thép austenit mangan 2. Thép Cacbon 3. Gang 4. Nhôm ............... Error!
Bookmark not defined.
Hình 1.21: Các dạng mòn phần cắt của dụng cụ khi tiện.... Error! Bookmark
not defined.
Hình 1.22: Quan hệ giữa một số dạng mòn của dụng cụ .... Error! Bookmark
not defined.
Hình 1.23: Các thông số đặc trưng cho mòn mặt trước ................................. 41
và mặt sau – ISO3685 [19].............................................................................. 41
Hình 1.24: Ảnh hưởng của vận tốc cắt đến cơ chế mòn .... Error! Bookmark
not defined.
khi cắt liên tục (a) và cắt gián đoạn (b) [23] ... Error! Bookmark not defined.
Hình 1.25: Sơ đồ mòn mặt trước và sau của mảnh dao PCBN .............. Error!
Bookmark not defined.
trên mặt cắt ngang [15] ................................... Error! Bookmark not defined.
Hình 1.26: Hình ảnh biến dạng dẻo lưỡi cắt [12].......... Error! Bookmark not
defined.
(V = 250m/p, S = 0,1mm/v, t = 0,125mm, r = 3,2mm, lưỡi cạnh viền) .. Error!
Bookmark not defined.
Hình 1.27: Hình ảnh mòn mặt sau dao BZN 8100 và BZN6000 [13] .... Error!
Bookmark not defined.
Hình 1.28: Vùng tương tác gi ữa vật liệu gia công và vật liệu dụng cụ [16].
......................................................................... Error! Bookmark not defined.
Hình 1.29: Sơ đồ đơn giản về quá trình mòn dính trên vùng có
lớp đọng của vật liệu gia công [13] ................. Error! Bookmark not defined.
Hình 1.30: Độ cứng tế vi của một số loại các bít ở nhiệt độ 20oC [15]. ........ 51
Hình 2.1. Mô hình thí nghiệm…………………………................................54
Hình 2.2. Máy tiện CNC - HTC 2050………………………………………55
Hình 2.3. Mảnh dao PCBN sử dụng trong nghiên cứu ……………………..56
Hình 2.4. Thân dao MTENN 2020 K16 - N………………………………...56
Hình 2.5. Cấu trúc kim cương của thép 9XC sử dụng trong thí nghiệm……57
Hình 2.6. Hình ảnh mặt trước của mảnh dao PCBN khi cắt với vận tốc cắt
180m/p chụp trên kính hiển vi điện tử……………………………………… 60
Hình 2.7. Hình ảnh phóng to vùng vật liệu gia công dính trên mặt trước của
dụng cụ khi cắt với vận tốc cắt 180m/p…………………………………..... 61
Hình 2.8: Hình ảnh mặt trước của mảnh dao PCBN chụp trên kính ............. 63
hiển vi điện tử .............................................................................................. 63
a. Khi cắt với vận tốc cắt 160 m/p sau khi tiện 12,36 phút ...................... 63
b. Khi cắt với vận tốc cắt 140 m/p sau khi tiện 19,72 phút ...................... 63
Hình 2.9: ......................................................................................................... 66
(a): Hình ảnh mòn mặt trước của mảnh dao PCBN sau khi tiện 2,61 phút
với các vết biến dạng dẻo bề mặt. ............................................................... 66
(b): Hình ảnh phóng to của (a). ................................................................... 66
(c): Mòn mặt trước của mảnh dao PCBN sau khi tiện 12,36 phút cho thấy
bề mặt bị mòn rất ghồ ghề. .......................................................................... 66
(d): Hình ảnh cơ chế mòn mặt trước với sự bóc tách của các lớp vật liệu
dụng cụ do dính - mỏi. ................................................................................ 66
Hình 2.10: ....................................................................................................... 67
(a) Mòn mặt sau của mảnh dao PCBN sau khi tiện 7,69 phút cho thấy vật
liệu gia công dính trên vùng mòn tương đối phẳng. ................................... 67
(b) Ảnh mòn mặt sau, sau 10,09 phút gia công. ......................................... 67
(c) Ảnh phóng to vật liệu gia công bám lên vùng mòn mặt sau (b)............ 67
(d) Góc mòn bên trái của (b). ...................................................................... 67
Hình 2.11: ....................................................................................................... 68
(a) Mòn mặt sau của mảnh dao PCBN sau khi tiện 12,36 phút cho thấy hình
ảnh gồ ghề của vùng mòn. .......................................................................... 68
(b) Hình ảnh phóng to của (a). .................................................................... 68
Hình 3.1: Ảnh hưởng của vận tốc cắt đến độ nhám ....................................... 73
Hình 3.2. Đồ thị quan hệ giữa vận tốc cắt và nhám Ra, Rz…………………75
Hình 3.3: Ảnh vùng mòn mặt sau của mảnh dao PCBN cắt với vận tốc cắt: 75
(a): v1 = 180 m/p sau 7,69 phút ............................................................... 75
(b): v2 = 160 m/p sau 12,36 phút ............................................................. 75
(c): v3 = 140 m/p sau 19,72 phút ............................................................. 75
Hình 3.4: ......................................................................................................... 76
(a)Ảnh phóng to vùng mòn mặt sau trên lưỡi cắt chính từ hình 3.3(c) .. 76
(b)Ảnh phóng to vùng “phồng” dưới lưỡi cắt phụ từ hình 3.3(b)........... 76
(c)So sánh cấu trúc tế vi vùng “phồng” dưới lưỡi cắt phụ (c’) với cấu trúc
tế vi nguyên thuỷ của PCBN (c) ............................................................. 76
(d)Ảnh phóng to vùng dính vật liệu gia công trên mặt sau dưới lưỡi cắt
phụ từ hình 3.3(c). ................................................................................... 76
Hình 3.5: ......................................................................................................... 77
(a) Ảnh mặt trước của mảnh dao PCBN cắt với vận tốc cắt 160 m/p sau
12,36 phút. ............................................................................................... 77
(b) Ảnh phóng to thể hiện cơ chế phá huỷ lưỡi cắt phụ từ hình 3.4(a) ... 77
Khi giảm vận tốc cắt xuống 160 m/p sau 12,36 phút, trên mặt sau chỉ
xuất hiện một vùng bị “phồng” ở phía dưới lưỡi cắt phụ. Tiếp tục giảm
vận tốc cắt tới 140 m/p, sau 19,72 phút, trên mặt sau chỉ tồn tại vùng
dính vật liệu gia công (Hình 3.3(c)). ....................................................... 77
Hình 3.6: Mặt hồi quy dạng Loga của nhám bề mặt Ra theo loga của
lượng chạy dao S và vận tốc V khi t = 0,12 mm…………………… ……….81
Hình 3.7: Đồ thị biểu diễn mối quan hệ giữa nhám bề mặt Ra và S,V.
Các vùng nhám bề mặt Ra nhận giá trị tối ưu (t = 0,12 mm). ......................... 82
Hình 3.8: Mặt hồi quy dạng loga của tuổi bền T theo loga của lượng
chạy dao S và vận tốc V khi t = 0,12 mm. ...................................................... 83
Hình 3.9: Đồ thị biểu diễn mối quan hệ giữa tuổi bền dụng cụ cắt T
và S, V. Các vùng tuổi bền T nhận giá trị tối ưu (t = 0,12 mm) ..................... 83
DANH MỤC CÁC BẢNG BIỂU
Bảng 1.1: Lịch sử và đặc tính của vật liệu dụng cụ cắt 26
Bảng 1.2: Tính chất cơ - nhiệt một số vật liệu dụng cụ 27
Bảng 1.3: Tính chất cơ - nhiệt của một số vật liệu phủ 27
Bảng 2.1: Thành phần hoá học của phôi thép 9XC (%) 57
Bảng 2.2: Vận tốc cắt và các thông số nhám 59
Bảng 3.1: Kết quả đo nhám bề mặt tương ứng với các chế độ cắt
thiết kế 74
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
1
PHẦN MỞ ĐẦU
1. Tính cấp thiết của đề tài :
Tiện cứng là nguyên công tiện các chi tiết đã qua tôi (thường là thép
hợp kim) có độ cứng cao khoảng từ 40 ÷ 65 HRC được sử dụng rộng rãi trong
công nghiệp ô tô, chế tạo bánh răng, vòng ổ, dụng cụ, khuôn mẫu vv… Tiện
cứng được sử dụng thay mài khi gia công chính xác các chi tiết máy có tỉ số
chiều dài trên đường kính nhỏ, các chi tiết có hình dáng phức tạp và không
nhất thiết phải sử dụng dung dịch trơn nguội. Tiện cứng cho độ chính xác và
nhám bề mặt tương đương với mài nhưng tiện cứng có khả năng tạo nên lớp
bề mặt có ứng suất dư nén làm tăng tuổi thọ về mỏi của chi tiết máy trong các
tiếp xúc lăn khi sử dụng, cho năng suất cao hơn mài với đầu tư ban đầu thấp
hơn nhiều. Tiện cứng thường dùng trong nguyên công tiện tinh với độ chính
xác ngang mài nên các yêu cầu về độ chính xác, độ cứng vững của hệ thống
công nghệ rất khắt khe.
Vật liệu thường sử dụng làm dao tiện cứng là CBN (Cubic nitrit Bo).
Đây là loại vật liệu tổng hợp sử dụng các hạt CBN với chất gắn kết l à TiC
hoặc kim loại như Co.
Khi sử dụng mảnh dao với hàm lượng CBN thấp (CBN – L) và cao
(CBN – H), mòn xuất hiện trên cả mặt trước và sau với ba cơ chế mòn khác
nhau là mòn do dính, mòn do cào xước và mòn do nhiệt, trong đó mòn do
nhiệt là cơ chế mòn chính. Mòn ảnh hưởng trực tiếp đến nhám bề mặt chi tiết
gia công, do vậy nó phải được nghiên cúu để nắm vững và điều khiển nhằm
giảm tác động của nó và nâng cao chất lượng của quá trình cắt gọt. Mòn của
dụng cụ cắt là hiện tượng lý hoá phức tạp trong quá trình gia công cắt gọt các
vật liệu. Cũng như mòn của các chi tiết máy, mòn của dụng cụ làm thay đổi
các thông số hình học dụng cụ và giảm tuổi bền cũng như khả năng làm việc
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
2
của dụng cụ. Mòn của dụng cụ còn ảnh hưởng trực tiếp đến chất lượng và độ
chính xác của bề mặt gia công. Đối với quá trình gia công loạt lớn và tự động
hoá, độ mòn và tuổi bền của dụng cụ lại càng được quan tâm và chú ý hơn do
các ảnh hưởng của nó tới năng suất và chất lượng của sản phẩm chế tạo. Do
vậy, việc nghiên cứu quá trình mòn khi tiện cứng để nâng cao khả năng làm
việc, nâng cao chất lượng bề mặt gia công là cần thiết đối với ngành cơ khí.
Khi tiện thép nhiệt luyện bằng dao nitritbo xuất hiện lực cắt đơn vị lớn,
do đó ở vùng tiếp xúc nhiệt độ cắt tăng cao, gây ảnh hưởng đến tuổ i bền của
dao và chất lượng lớp bề mặt của chi tiết gia công.
Xét về mặt mài mòn của dụng cụ cắt cần quan tâm tới nhiệt độ lớn nhất
trên mặt trước và mặt sau, sự phân bố nhiệt trên các bề mặt này. Nhưng việc
xác định nhiệt độ lớn nhất này rất khó khăn. Mặt khác nhiệt độ cắt chịu ảnh
hưởng