Luận văn Nghiên cứu các yếu tố ảnh hưởng đến bột hyđroxyapatit Ca10(PO4)6(OH)2 kích thước nano điều chế từ canxi hyđroxit Ca(OH)2

Apatit là họ khoáng photphat của canxi có công thức chung là Ca10(PO4)6M2, gồm bốn dạng thường được nhắc đến là hyđroxyapatit, floro apatit, cloro apatit và bromo apatit với M = OH, F, Cl, Br tương ứng. Trong bốn dạng này, hyđroxyapatit (viết tắt là HA) đang được tập trung nghiên cứu do các đặc tính quý giá như có hoạt tính và độ tương thích sinh học cao với các tế bào và các mô, tạo liên kết trực tiếp với xương non dẫn đến sự tái sinh xương nhanh mà không bị cơ thể đào thải [22], [23] HA có cấu trúc tinh thể thuộc dạng lục phương hoặc dạng đơn tà. Do có cùng bản chất hoá học và cấu trúc, HA là dạng canxi photphat dễ hấp thu nhất đối với cơ thể con người và có tỷ lệ Ca/P đúng như tỷ lệ Ca/P tự nhiên trong xương và răng. Các nghiên cứu tập trung vào tổng hợp HA ở các dạng bột mịn và siêu mịn, dạng khối xốp, dạng màng bằng các phương pháp khác nhau và khảo sát các đặc tính của chúng để mở rộng khả năng ứng dụng. Ở dạng bột, các nhà nghiên cứu đang cố gắng điều chế HA kích thước nano (trong khoảng 20 – 100nm) để góp phần nâng cao khả năng hấp thụ của cơ thể. HA bột dạng vi tinh thể cùng với một số khoáng chất bổ sung khác đã được dùng trong bào chế thuốc chống loãng xương và thực phẩm chức năng bổ sung canxi, xử lý các khuyết tật trong xương do chấn thương Ở dạng màng, một lớp màng HA mỏng phủ trên gốm nhân tạo có thể tăng cường khả năng liên kết giữa xương nhân tạo với mô và xương tự nhiên. HA dạng khối xốp được ứng dụng để sửa chữa các khuyết tật của xương và răng. Ngoài ra, các nghiên cứu cho thấy, HA dạng khối xốp bền trong các dịch sinh lý của cơ thể và có tác dụng nhả chậm các dược chất đi kèm với nó [25], [26].

doc89 trang | Chia sẻ: ngatran | Lượt xem: 2328 | Lượt tải: 1download
Bạn đang xem trước 20 trang tài liệu Luận văn Nghiên cứu các yếu tố ảnh hưởng đến bột hyđroxyapatit Ca10(PO4)6(OH)2 kích thước nano điều chế từ canxi hyđroxit Ca(OH)2, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ĐẶT VẤN ĐỀ Apatit là họ khoáng photphat của canxi có công thức chung là Ca10(PO4)6M2, gồm bốn dạng thường được nhắc đến là hyđroxyapatit, floro apatit, cloro apatit và bromo apatit với M = OH, F, Cl, Br tương ứng. Trong bốn dạng này, hyđroxyapatit (viết tắt là HA) đang được tập trung nghiên cứu do các đặc tính quý giá như có hoạt tính và độ tương thích sinh học cao với các tế bào và các mô, tạo liên kết trực tiếp với xương non dẫn đến sự tái sinh xương nhanh mà không bị cơ thể đào thải [22], [23]… HA có cấu trúc tinh thể thuộc dạng lục phương hoặc dạng đơn tà. Do có cùng bản chất hoá học và cấu trúc, HA là dạng canxi photphat dễ hấp thu nhất đối với cơ thể con người và có tỷ lệ Ca/P đúng như tỷ lệ Ca/P tự nhiên trong xương và răng. Các nghiên cứu tập trung vào tổng hợp HA ở các dạng bột mịn và siêu mịn, dạng khối xốp, dạng màng bằng các phương pháp khác nhau và khảo sát các đặc tính của chúng để mở rộng khả năng ứng dụng. Ở dạng bột, các nhà nghiên cứu đang cố gắng điều chế HA kích thước nano (trong khoảng 20 – 100nm) để góp phần nâng cao khả năng hấp thụ của cơ thể. HA bột dạng vi tinh thể cùng với một số khoáng chất bổ sung khác đã được dùng trong bào chế thuốc chống loãng xương và thực phẩm chức năng bổ sung canxi, xử lý các khuyết tật trong xương do chấn thương… Ở dạng màng, một lớp màng HA mỏng phủ trên gốm nhân tạo có thể tăng cường khả năng liên kết giữa xương nhân tạo với mô và xương tự nhiên. HA dạng khối xốp được ứng dụng để sửa chữa các khuyết tật của xương và răng. Ngoài ra, các nghiên cứu cho thấy, HA dạng khối xốp bền trong các dịch sinh lý của cơ thể và có tác dụng nhả chậm các dược chất đi kèm với nó [25], [26]. Ở nước ta, các vật liệu vô cơ có khả năng ứng dụng trong y sinh học nói chung và dược phẩm nói riêng đã được quan tâm từ lâu. Tuy nhiên, việc ứng dụng các vật liệu vô cơ trong y sinh học và dược học còn nhiều hạn chế. Từ năm 2005, nhóm nghiên cứu thuộc Phòng Hoá Vô cơ, Viện Hoá học (Viện KH&CN Việt Nam) đã thực hiện các nghiên cứu về tổng hợp vật liệu HA dạng bột [5] và dạng xốp [27] hướng đến ứng dụng trong dược học và y sinh học. Để góp phần hoàn thiện quy trình chế tạo HA kích thước nano ứng dụng trong y sinh học và dược học, tôi lựa chọn đề tài: “Nghiên cứu các yếu tố ảnh hưởng đến bột hyđroxyapatit Ca10(PO4)6(OH)2 kích thước nano điều chế từ canxi hyđroxit Ca(OH)2”. Các đặc trưng quan trọng của bột HA như độ đơn pha, độ tinh thể, hình dạng, kích thước hạt… có ảnh hưởng rất lớn đến hiệu quả sử dụng. Do vậy, trên cơ sở tổng hợp bột HA kích thước nano, luận văn tập trung vào khảo sát các yếu tố ảnh hưởng đến chất lượng sản phẩm (độ đơn pha, độ tinh thể, kích thước hạt…) theo những nội dung sau: - Khảo sát ảnh hưởng của nhiệt độ. - Khảo sát ảnh hưởng của tốc độ cấp axit. - Khảo sát ảnh hưởng của nồng độ chất phản ứng ban đầu. - Khảo sát ảnh hưởng của các loại dung môi trong hỗn hợp phản ứng (nước, etanol, hỗn hợp etanol + nước). - Khảo sát ảnh hưởng của tốc độ khuấy trộn. - Nghiên cứu sơ bộ ảnh hưởng của hiệu ứng siêu âm. Trên cơ sở các kết quả nghiên cứu thu được, lựa chọn các thông số công nghệ cho quy trình sản xuất HA. CHƯƠNG I: TỔNG QUAN 1.1. Tính chất của hyđroxyapatit 1.1.1. Tính chất vật lý Hydroxyapatit (HA), Ca10(PO4)6(OH)2, có màu trắng, trắng ngà, vàng nhạt hoặc xanh lơ, tuỳ theo điều kiện hình thành, kích thước hạt và trạng thái tập hợp. HA có nhiệt độ nóng chảy 17600C và nhiệt độ sôi 28500C, độ tan trong nước 0,7g/l, khối lượng mol phân tử 1004,60g, khối lượng riêng là 3,156g/cm3, độ cứng theo thang Mohs bằng 5. Các tinh thể HA tự nhiên và nhân tạo thường tồn tại ở dạng hình que, hình kim, hình vảy,… [29]. Sử dụng phương pháp hiển vi điện tử SEM hoặc TEM có thể nhận biết được các dạng tồn tại của tinh thể HA (Hình 1.1). Hình 1.1: Ảnh hiển vi điện tử của các tinh thể HA (a) - Dạng hình que (b) - Dạng hình trụ (c) - Dạng hình cầu (d) - Dạng hình sợi (e) - Dạng hình vảy (f) - Dạng hình kim HA tồn tại ở hai dạng cấu trúc là dạng lục phương (hexagonal) và dạng đơn tà (monoclinic). HA dạng lục phương thường được tạo thành trong quá trình điều chế ở nhiệt độ từ 25 đến 1000C, còn dạng đơn tà chủ yếu được sinh ra khi nung dạng lục phương ở 8500C trong không khí sau đó làm nguội đến nhiệt độ phòng. Giản đồ nhiễu xạ tia X của hai dạng này giống nhau hoàn toàn về số lượng và vị trí của các vạch nhiễu xạ. Chúng chỉ khác nhau về cường độ của pic, dạng đơn tà cho các pic có cường độ yếu hơn các pic của dạng lục phương khoảng 1% [14]. Cấu trúc ô mạng cơ sở của tinh thể HA gồm các ion Ca2+, PO43- và OH- được sắp xếp như hình 1.2a. Ô mạng này có dạng hình lục phương , thuộc nhóm không gian P63/m với các hằng số mạng a = 0,9417nm, b = 0,9417nm và c = 0,6875nm, α = β = 900 và γ = 1200 [30]. Đây là cấu trúc thường gặp của HA tổng hợp, trong thành phần của xương và ngà răng [31]. Ở men răng, các tinh thể HA sắp xếp rất đặc khít với nhau bởi các ô mạng cơ sở thuộc hệ đơn tà, nhóm không gian P21/b (hình 1.2b). Các hằng số mạng lần lượt có giá trị: a = 0,9421nm, b = 1,8843nm và c = 0,6881nm, α = β = 900 và γ = 1200 [32]. Công thức cấu tạo của phân tử HA được thể hiện trên hình 1.3, có thể nhận thấy phân tử HA có cấu trúc mạch thẳng, các liên kết Ca – O là liên kết cộng hoá trị. Hai nhóm OH được gắn với hai nguyên tử P ở hai đầu mạch [35]:  Hình 1.3: Công thức cấu tạo của phân tử HA 1.1.2. Tính chất hoá học HA không phản ứng với kiềm nhưng phản ứng với axit tạo thành các muối canxi và nước: Ca10(PO4)6(OH)2 + 2HCl  3Ca3(PO4)2 + CaCl2 + 2H2O (1.1) HA tương đối bền nhiệt, bị phân huỷ chậm trong khoảng nhiệt độ từ 8000C đến 12000C tạo thành oxy-hydroxyapatit theo phản ứng: Ca10(PO4)6(OH)2  Ca10(PO4)6(OH)2-2xOx + xH2O (0  x  1) (1.2) Ở nhiệt độ lớn hơn 12000C, HA bị phân huỷ thành β - Ca3(PO4)2 (β – TCP) và Ca4P2O9 hoặc CaO: Ca10(PO4)6(OH)2  2β – Ca3(PO4)2 + Ca4P2O9 + H2O (1.3) Ca10(PO4)6(OH)2  3β – Ca3(PO4)2 + CaO + H2O (1.4) 1.1.3. Tính chất sinh học [35] Như đã trình bày ở trên, do có cùng bản chất và thành phần hoá học, HA tự nhiên và nhân tạo đều là những vật liệu có tính tương thích sinh học cao. Ở dạng bột mịn kích thước nano, HA là dạng canxi photphat dễ được cơ thể hấp thụ nhất với tỷ lệ Ca/P trong phân tử đúng như tỷ lệ trong xương và răng. Ở dạng màng và dạng xốp, HA có thành phần hoá học và các đặc tính giống xương tự nhiên, các lỗ xốp liên thông với nhau làm cho các mô sợi, mạch máu dễ dàng xâm nhập. Chính vì vậy mà vật liệu này có tính tương thích sinh học cao với các tế bào và mô, có tính dẫn xương tốt, tạo liên kết trực tiếp với xương non dẫn đến sự tái sinh xương nhanh mà không bị cơ thể đào thải. Ngoài ra, HA là hợp chất không gây độc, không gây dị ứng cho cơ thể người và có tính sát khuẩn cao. Hợp chất HA tương đối bền với dịch men tiêu hoá, ít chịu ảnh hưởng của dung dịch axit trong dạ dày. Ở dạng bột mịn kích thước nano, HA được cơ thể người hấp thụ rất nhanh qua niêm mạc lưỡi và thực quản. Vì những đặc tính này, bột HA kích thước nano được dùng làm thuốc bổ sung canxi với hiệu quả cao. Để chế tạo vật liệu HA có tính tương thích sinh học cao, cần nghiên cứu và chọn lựa các thông số công nghệ phù hợp với mỗi mục đích ứng dụng trong y sinh học và dược học. 1.2. Vai trò và ứng dụng của HA Xương là phần quan trọng của cơ thể người, có ý nghĩa to lớn về mặt sinh học và cấu trúc. Về mặt sinh học, xương là nơi tập trung canxi nhiều nhất và là nơi sản xuất các tế bào máu. Còn về mặt cấu trúc, xương là khung đỡ cho các bộ phận khác, hình thành nên kiến trúc và hình dáng cơ thể. Chất khoáng trong xương gồm chủ yếu là HA dạng khối xốp và một số chất chứa Na+, K+, Mg2+, Cl-, F-, CO32- [38],[39]. Khi mới sinh ra, xương có tỷ lệ collagen nhiều và tỷ lệ khoáng ít. Càng lớn lên, tỷ lệ khoáng càng tăng lên, xương càng trở nên giòn, dễ gãy. Trong xương người trẻ tuổi thì các pha vô định hình chiếm ưu thế và chỉ có một phần chuyển hoá thành pha tinh thể, còn ở người trưởng thành thì đến 70% khối lượng của xương là HA. HA có vi cấu trúc là các sợi tinh thể dài khoảng 10  15nm kết thành bó xốp với độ xốp từ 40  60% gồm các mao quản thông nhau tạo ra phần khung của xương [7]. Do có hoạt tính sinh học, có khả năng tương thích với các cấu trúc xương và có tính dẫn xương tốt nên HA có thể được dùng để nối ghép, thay thế xương trong cơ thể người. Các phẫu thuật ghép xương, chỉnh hình đã đạt được nhiều thành tựu nhờ ứng dụng vật liệu y sinh HA. Một vấn đề lớn khác đối với y học thế giới đó là căn bệnh loãng xương. Mặc dù không gây tử vong nhưng bệnh loãng xương ảnh hưởng rất nhiều đến chất lượng cuộc sống của số đông người cao tuổi, đặc biệt là phụ nữ. Theo thống kê của Tổ chức Y tế Thế giới (WHO), có đến 1/3 phụ nữ và 1/5 nam giới trên 50 tuổi bị bệnh loãng xương. Dự báo tới năm 2050, toàn thế giới sẽ có tới 6,3 triệu trường hợp gãy cổ xương đùi do loãng xương và 51% số này sẽ ở các nước châu Á, nơi mà khẩu phần ăn hàng ngày còn rất thiếu canxi và việc chẩn đoán sớm và điều trị tích cực bệnh loãng xương còn gặp rất nhiều khó khăn. Ở Mỹ, ngành y tế đã phải tiêu tốn hàng năm khoảng 14 tỉ USD để điều trị cho 1,5 triệu trường hợp gẫy xương do bệnh loãng xương gây ra [4]. Dưới đây là một số ứng dụng cụ thể của HA tuỳ theo dạng tồn tại của nó. 1.2.1. Ứng dụng của HA bột Do lượng canxi hấp thụ thực tế từ thức ăn mỗi ngày tương đối thấp nên rất cần bổ sung canxi cho cơ thể, đặc biệt cho trẻ em và người cao tuổi. Canxi có trong thức ăn hoặc thuốc thường nằm ở dạng hợp chất hoà tan nên khả năng hấp thụ của cơ thể không cao và thường phải dùng kết hợp với vitamin D nhằm tăng cường việc hấp thụ và chuyển hoá canxi thành HA. Có thể bổ sung canxi cho cơ thể người bằng cách dùng thức ăn, thuốc tiêm hoặc truyền huyết thanh… Một phương pháp hữu hiệu là sử dụng HA ở dạng bột mịn, kích thước nano để bổ sung canxi [40]. Với kích thước cỡ 20 – 100nm, HA được hấp thụ trực tiếp vào cơ thể mà không cần phải chuyển hoá thêm. Canxi ở dạng ion có vai trò rất quan trọng trong nhiều hoạt động của cơ thể người như tham gia vào quá trình co cơ, dẫn truyền thần kinh, giải phóng các hooc môn và đông máu. Ngoài ra nó còn tham gia vào quá trình điều hoà nhiều enzym khác nhau trong cơ thể [9]. Đối với bột HA có kích thước hạt khoảng 150nm trở lên, quá trình thiêu kết để tạo gốm HA rất khó khăn. Quá trình kết khối diễn ra ở nhiệt độ khá cao (1000 – 12000C) trong thời gian dài (2 – 3 giờ), làm cho gốm HA bị phân huỷ thành các hợp chất không mong muốn, có hại cho cơ thể. Với kích thước nano (từ 20 – 100nm), nhiệt độ kết khối của HA bột giảm xuống chỉ còn khoảng 800 – 10000C trong thời gian từ ½ giờ đến 1 giờ. Điều này làm cho việc chế tạo gốm y sinh học từ HA có chất lượng cao, thuận lợi và dễ dàng hơn. Hình 1.4 là hình ảnh của một số loại thực phẩm chức năng và thuốc bổ sung canxi sử dụng nguyên liệu HA bột dạng vi tinh thể đang được lưu hành trên thị trường [40]. Hình 1.4: Thuốc bổ sung canxi sử dụng nguyên liệu HA dạng vi tinh thể 1.2.2. Ứng dụng của HA dạng màng Thông thường, người ta sử dụng các vật liệu bền cơ – hoá và nhẹ để thay thế, sửa chữa những khuyết tật của xương và răng. Phổ biến nhất là hợp kim Ti6Al4V, đây là vật liệu trơ sinh học và có độ bền cơ – hoá cao nhưng trong thực tế nó vẫn bị ăn mòn khi nằm trong cơ thể người, tạo ra các chất độc hại và làm cho liên kết giữa xương và chi tiết ghép bị lỏng lẻo [42]. Lớp màng gốm HA có chiều dày cỡ µm được phủ lên bề mặt vật liệu thay thế bằng các phương pháp plasma, bốc bay, điện phân… đã hạn chế những nhược điểm nêu trên. Nhưng độ bám dính của lớp màng trên vật liệu nền không bền chặt, do vậy tuổi thọ và phạm vi ứng dụng của chúng không cao [43] Để cải thiện độ bám dính, người ta đã phủ lên các kim loại và hợp kim nền một lớp màng gốm HA có chiều dày cỡ nanomet (màng n – HA) bằng phương pháp điện hoá nói chung và phương pháp điện di (Electrophoretic Deposition, EPD). Lớp màng n – HA có độ bám dính cao với vật liệu nền (> 60MPa) và rất bền theo thời gian. Công nghệ màng n – HA đã tạo ra những chi tiết xương nhân tạo có khả năng tự liên kết với xương và mô tự nhiên, có tính tương thích sinh học cao với cơ thể con người. Bằng những tiến bộ trong việc tạo màng n – HA, người ta không chỉ làm tăng tuổi thọ các chi tiết ghép mà còn mở rộng phạm vi ứng dụng của màng n – HA từ chỗ chỉ áp dụng cho ghép xương hông đã tiến đến có thể ứng dụng ghép xương đùi, xương khớp gối và các sửa chữa, thay thế xương ở vị trí khác. 1.2.3. Ứng dụng của HA dạng xốp Như đã trình bày ở trên, vật liệu gốm xốp HA có tính tương thích sinh học cao, có nhiều lỗ liên thông với nhau, tạo thuận lợi cho sự xâm nhập của mô sợi và mạch máu, có tính dung nạp tốt, không độc, không dị ứng. Nhờ có khả năng đặc biệt này mà ngày nay, HA dạng gốm xốp được ứng dụng đặc biệt rộng rãi trong y sinh học như: - Chế tạo răng giả và sửa chữa những khuyết tật của răng: các nhà khoa hoc Nhật Bản đã thành công trong viêc tạo ra một hỗn hợp gồm HA tinh thể kích thước nano và polymer sinh học có khả năng phủ và bám dính trên răng theo cơ chế epitaxy, nghĩa là tinh thể HA mới tạo thành lớp men răng cứng chắc, “bắt chước” theo đúng tinh thể HA của lớp men răng tự nhiên ở dưới [45].  Giai đoạn a: Lớp men HA cũ, cần thay thế trên bề mặt răng bị phân huỷ bởi dung dịch H2O2 + H3PO4. Hợp chất H2O2 còn có tác dụng loại bỏ các chất bẩn tồn tại trên răng. Giai đoạn b: Các ion Ca2+, PO43-, OH- trong các polime sinh học dạng bột nhão tạo thành vi tinh thể HA kích thước nano. Hỗn hợp này được phủ lên bề mặt răng cũ để tạo thành lớp men răng mới. - Chế tạo mắt giả [46]:  Hình 1.6: HA xốp tổng hợp từ san hô được sử dụng làm mắt giả HA xốp tổng hợp từ san hô có cấu trúc xốp bền vững, nhẹ và đặc biệt là có khả năng thích ứng cao với cơ thể. Việc sử dụng loại vật liệu này đã khắc phục được hiện tượng sụp mi do trọng lượng, hạn chế các phản ứng của cơ thể và làm tăng thời gian sử dụng của mắt giả [49]. - Chế tạo những chi tiết để ghép xương và sửa chữa những khuyết tật của xương [50]:  Hình 1.7: Gốm y sinh HA tổng hợp bằng các phương pháp khác nhau Tuỳ thuộc vào mục đích cấy ghép hoặc thay thế, người ta có thể chế tạo ra các sản phẩm gốm HA (Hình 1.7) có kích thước và độ xốp khác nhau [51]. Sau đó, gia công các sản phẩm này thành các chi tiết phù hợp hoặc có thể sử dụng gốm HA ở dạng hạt để điền đầy những chỗ khuyết tật của xương [35].  Hình 1.8: Sửa chữa khuyết tật của xương bằng gốm HA dạng khối xốp hoặc dạng hạt Ngoài ra, còn có một số ứng dụng của gốm HA như: - Làm điện cực sinh học cho thử nghiệm sinh học [52]. - Làm vật liệu truyền dẫn và nhả chậm thuốc [54]. - Gần đây, người ta phát hiện HA dạng xốp có khả năng vận chuyển và phân tán insulin trong ruột [55]. Tuy nhiên, gốm HA còn có một nhược điểm là độ bền nén, độ bền uốn thấp. Tồn tại này cản trở viêc áp dụng gốm HA vào các chi tiết đòi hỏi chịu lực lớn. 1.2.4. Ứng dụng của HA dạng composit Bản chất của gốm xốp và màng HA là có độ bền cơ học thấp. Một giải pháp để tăng độ bền cơ học là tạo ra một tổ hợp gốm composit bằng cách phân tán HA bột vào các polyme sinh học như collagen, chitosan, xenlulo, đường sacaro… [51]. Vật liệu ở dạng này được sử dụng làm các chi tiết cấy ghép xương chất lượng cao, làm kẹp nối xương hoặc có thể làm chất truyền dẫn thuốc. Việc sử dụng các polyme sinh học làm chất nền tạo điều kiện cho việc gia công, chế tạo các chi tiết dễ dàng hơn. Mặt khác, các polyme này còn có khả năng liên kết với các tế bào sinh học thông qua các nhóm chức của mình. Đây cũng là ưu điểm vượt trội của vật liệu composit chứa HA [58]. 1.3. Tình hình nghiên cứu vật liệu HA 1.3.1 Trên thế giới Cùng với sự tiến bộ của khoa học kỹ thuật, các nhà khoa học đã nghiên cứu nhiều phương pháp khác nhau để chế tạo HA như: dạng bột được điều chế bằng phương pháp sol – gel [59], kết tủa [60], phun sấy [61], siêu âm [20]…; dạng màng - bằng phương pháp vật lý [62] hoặc điện hoá [63]…; dạng khối rắn, khối xốp, vật liệu tổ hợp (composit) - bằng phương pháp nén ép – thiêu kết HA bột [6], phản ứng pha rắn, phản ứng thuỷ nhiệt…[58]. Hiện nay, trên thế giới đã sản xuất được nhiều chế phẩm từ nguyên liệu HA. Năm 1983, Klein và các đồng nghiệp lần đầu tiên tạo ra chi tiết ghép xương bằng gốm chứa 100% HA [67]. Thực tế cho thấy, sự phát triển của xương trong miếng ghép này có tốc độ phát triển chậm. Điều này tạo cho chất lượng của xương ở nơi cấy ghép rất tốt, nhưng thời gian điều trị kéo dài. Bằng những thí nghiệm khác, họ đã cấy ghép các chi tiết gốm chứa 100% β - TCP. Kết quả cho thấy, tốc độ phát triển của xương non trong miếng ghép rất nhanh, do vậy làm cho chất lượng của xương ở nơi cấy ghép không tốt cho quá trình phát triển của xương. Năm 1986, Moore và Chapman đã chế tạo được miếng ghép tổ hợp giữa hai pha HA và β -TCP. Trong thực tế, gốm HA tốt bao gồm khoảng 93 – 94% HA và 6 – 7% TCP. TCP có hai dạng thù hình là α và β -TCP, thành phần α - TCP có tác dụng làm tăng tốc độ tái sinh xương, nó như là nguồn khoáng cung cấp trực tiếp cho chỗ phát triển xương mới. Điều này có nghĩa rằng phần β -TCP sẽ tiêu biến dần như là nguồn cung cấp khoáng cho xương non phát triển vào chỗ khuyết xương. Do đó gốm tổ hợp HA - β - TCP là vật liệu y sinh chính cho các phẫu thuật ghép xương, nối xương, chỉnh hình hoặc sửa chữa xương. Để chữa trị căn bệnh loãng xương, Cục Quản lý Thực phẩm và Dược phẩm Mỹ (FDA) đã cho phép sử dụng HA trong sản xuất thuốc và thực phẩm chức năng. Nhiều loại thuốc và thực phẩm bổ sung canxi có sử dụng HA đã được lưu hành trên thị trường. Trong số đó có thể kể đến Ossopan của Pháp, Bone Booster Complex, Bone Dense Calcium của Mỹ, Calcium Complex của Anh, SuperCal của New Zealand [69]. Như trong phần ứng dụng đã đề cập, HA dạng màng đã được các nhà khoa học Nhật Bản chế tạo thành vật liệu chế tạo răng giả và sửa chữa những khuyết tật của răng. 1.3.2 Nghiên cứu và ứng dụng HA ở Việt Nam Trong nước, các hợp chất vô cơ có khả năng ứng dụng làm vật liệu sinh học nói chung và HA nói riêng còn nhiều hạn chế. Năm 2005, lần đầu tiên Viện Công nghệ Xạ hiếm đã triển khai đề tài chế thử gốm HA theo công nghệ của Italia và đã bước đầu thử nghiệm thành công trên động vật [3]. Công nghệ này dựa trên phương pháp nhúng tẩm khung xốp hữu cơ xenlulô vào dung dịch huyền phù HA, sau đó nung thiêu kết ở nhiệt độ cao. Khoa Hoá học, Đại học Bách khoa Hà Nội đã nghiên cứu và công bố kết quả sơ bộ về phương pháp tổng hợp bột và màng gốm HA [6]. Từ năm 2005 đến nay, Viện Hoá học, Viện Khoa học và Công nghệ Việt Nam đã công bố một số kết quả nghiên cứu chế tạo HA bột [5] và HA xốp [27]. Trong đó HA xốp được chế tạo bằng phương pháp nén ép - thiêu kết HA bột với các chất tạo xốp chitosan, xenlulo, đường sacaro và phương pháp phản ứng pha rắn giữa Ca(OH)2 và Ca3(PO4)2. Việc chế tạo gốm HA từ khung xốp tự nhiên của san hô, mai mực, vỏ sò… bằng phản ứng thuỷ nhiệt ở áp suất cao cũng đã được thực hiện. Năm 2008, Trung tâm Phát triển Khoa học và Công nghệ Trẻ đã nghiên cứu đề tài “Nghiên cứu chế tạo gốm sinh học Calcium phosphate: Hydroxyapatite Ca10(PO4)6(OH)2(HA) và Tricalicium phosphate Ca3(PO4)2(TCP), ứng dụng thay thế một số bộ phận xương, khớp trong cơ thể con người”. 1.4. Các phương pháp tổng hợp HA Trên thế giới, việc nghiên cứu chế tạo vật liệu HA ở các dạng đã được triển khai từ lâu và đã đạt được những thành tựu đáng kể. Các nghiên cứu tập trung vào tổng hợp HA ở dạng bột mịn và siêu mịn, dạng khối xốp, dạng màng bằng các phương pháp khác nhau và khảo sát các đặc tính để nâng cao khả năng ứng dụng của chúng. Việc ứng dụng loại vật liệu tiên tiến này đã tạo ra những bước tiến mới trong các lĩnh vực: xét nghiệm, điều trị y học cũng như trong dược phẩm và vật liệu y sinh học. Tuỳ thuộc vào mục đích ứng dụng, HA ở các dạng khác nhau có thể được tổng hợp bằng nhiều phương pháp từ các nguyên liệu khác nhau. Dựa vào điều kiện tiến hành phản ứng, có thể phân chia các phương pháp thành: phương pháp ướt và phương pháp khô; phương pháp vật lý và phương pháp hoá học hoặc chia theo dạng tồn tại (dạng bột, dạng màng, dạ
Tài liệu liên quan