Xác suất thống kê - Các phân phối xác suất thông dụng
Định nghĩa (Normal Distribution) Bnn X có phân phối chuẩn, được kí hiệu X ~ N(µ; s2), có hàm mđxs f(x, µ, s) = 1 sv2pe- (x-µ)2 2s2 1 X(?) = R 2 ModX = EX = µ 3 VarX = s2
Bạn đang xem trước 20 trang tài liệu Xác suất thống kê - Các phân phối xác suất thông dụng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Các phân phối xác suất thông dụng
XÁC SUẤT THỐNG KÊ
Nguyễn Ngọc Phụng
-
Trường Đại Học Ngân Hàng TPHCM
ĐT: 0989 969 057
E-mail: phungngoc.nguyen@gmail.com
phungvl@yahoo.com
10-10-2010
Nguyễn Ngọc Phụng - Trường Đại Học Ngân Hàng TPHCM XÁC SUẤT THỐNG KÊ
Các phân phối xác suất thông dụng
Phân phối chuẩn
Phân phối nhị thức
Phân phối Poisson
Định nghĩa (Normal Distribution)
Bnn X có phân phối chuẩn, được kí hiệu X ∼ N(µ;σ2), có hàm mđxs
f(x, µ, σ) = 1
σ
√
2pie
− (x−µ)2
2σ2
1 X(Ω) = R
2 ModX = EX = µ
3 VarX = σ2
Nguyễn Ngọc Phụng - Trường Đại Học Ngân Hàng TPHCM XÁC SUẤT THỐNG KÊ
Các phân phối xác suất thông dụng
Phân phối chuẩn
Phân phối nhị thức
Phân phối Poisson
Đồ thị hàm f(x,4,1)
Nguyễn Ngọc Phụng - Trường Đại Học Ngân Hàng TPHCM XÁC SUẤT THỐNG KÊ
Các phân phối xác suất thông dụng
Phân phối chuẩn
Phân phối nhị thức
Phân phối Poisson
Định nghĩa (Standard Normal Distribution)
Trường hợp µ = 0, σ = 1 ta được X ∼ N(0; 1). Khi đó X có phân phối
chuẩn chuẩn tắc với hàm mđxs f(x) = 1√2pie
− x22 (Hàm Gauss)
Nguyễn Ngọc Phụng - Trường Đại Học Ngân Hàng TPHCM XÁC SUẤT THỐNG KÊ
Các phân phối xác suất thông dụng
Phân phối chuẩn
Phân phối nhị thức
Phân phối Poisson
Đồ thị của hàm Gauss
Nguyễn Ngọc Phụng - Trường Đại Học Ngân Hàng TPHCM XÁC SUẤT THỐNG KÊ
Các phân phối xác suất thông dụng
Phân phối chuẩn
Phân phối nhị thức
Phân phối Poisson
Nguyễn Ngọc Phụng - Trường Đại Học Ngân Hàng TPHCM XÁC SUẤT THỐNG KÊ
Các phân phối xác suất thông dụng
Phân phối chuẩn
Phân phối nhị thức
Phân phối Poisson
Nguyễn Ngọc Phụng - Trường Đại Học Ngân Hàng TPHCM XÁC SUẤT THỐNG KÊ
Các phân phối xác suất thông dụng
Phân phối chuẩn
Phân phối nhị thức
Phân phối Poisson
Hàm ϕ(x) =
x∫
0
f(t)dt (Hàm Laplace). Đồ thị của hàm Laplace
Nguyễn Ngọc Phụng - Trường Đại Học Ngân Hàng TPHCM XÁC SUẤT THỐNG KÊ
Các phân phối xác suất thông dụng
Phân phối chuẩn
Phân phối nhị thức
Phân phối Poisson
Nguyễn Ngọc Phụng - Trường Đại Học Ngân Hàng TPHCM XÁC SUẤT THỐNG KÊ
Các phân phối xác suất thông dụng
Phân phối chuẩn
Phân phối nhị thức
Phân phối Poisson
Nguyễn Ngọc Phụng - Trường Đại Học Ngân Hàng TPHCM XÁC SUẤT THỐNG KÊ
Các phân phối xác suất thông dụng
Phân phối chuẩn
Phân phối nhị thức
Phân phối Poisson
Nguyễn Ngọc Phụng - Trường Đại Học Ngân Hàng TPHCM XÁC SUẤT THỐNG KÊ
Các phân phối xác suất thông dụng
Phân phối chuẩn
Phân phối nhị thức
Phân phối Poisson
Nguyễn Ngọc Phụng - Trường Đại Học Ngân Hàng TPHCM XÁC SUẤT THỐNG KÊ
Các phân phối xác suất thông dụng
Phân phối chuẩn
Phân phối nhị thức
Phân phối Poisson
Nếu X ∼ N(0; 1) : P(a ≤ X ≤ b) =
b∫
a
f(x)dx = ϕ(b)− ϕ(a)
Nếu X ∼ N(µ;σ2) : P(a ≤ X ≤ b) = P( a−µσ ≤ X−µσ ≤ b−µσ ) =
ϕ( b−µσ )− ϕ( a−µσ )
Nguyễn Ngọc Phụng - Trường Đại Học Ngân Hàng TPHCM XÁC SUẤT THỐNG KÊ
Các phân phối xác suất thông dụng
Phân phối chuẩn
Phân phối nhị thức
Phân phối Poisson
Một số lưu ý:
1 f(x) ≈ 0, x ≥ 4, 8
2 f(−x) = f(x), ∀x
3 ϕ(x) ≈ 0, 5, x ≥ 4, 5
4 ϕ(−x) = −ϕ(x), ∀x
5 ϕ(+∞) = 0, 5, ϕ(−∞) = −0, 5
Nguyễn Ngọc Phụng - Trường Đại Học Ngân Hàng TPHCM XÁC SUẤT THỐNG KÊ
Các phân phối xác suất thông dụng
Phân phối chuẩn
Phân phối nhị thức
Phân phối Poisson
Ví dụ: Một trang trại trồng thử nghiệm 2 giống táo A và B cho thấy táo
thu hoạch của 2 giống này có đường kính tối đa lần lượt tuân theo phân
phối chuẩn N(8,35;48,65)(cm) và N(8,21;12,26)(cm). Táo loại I là táo có
đường kính tối đa không nhỏ hơn là 8cm. Hãy cho biết giống táo nào cho
tỉ lệ táo loại I cao hơn?
Nguyễn Ngọc Phụng - Trường Đại Học Ngân Hàng TPHCM XÁC SUẤT THỐNG KÊ
Các phân phối xác suất thông dụng
Phân phối chuẩn
Phân phối nhị thức
Phân phối Poisson
Quy tắc nσ
Cho bnn X ∼ N(µ;σ2)
n=2: P(|X− µ| ≤ 2σ) = 2ϕ(2) ≈ 0, 9545%
n=3: P(|X− µ| ≤ 3σ) = 2ϕ(3) ≈ 0, 9973%
n=6: P(|X− µ| ≤ 6σ) = 2ϕ(6) ≈ 0, 99999999803%
Nguyễn Ngọc Phụng - Trường Đại Học Ngân Hàng TPHCM XÁC SUẤT THỐNG KÊ
Các phân phối xác suất thông dụng
Phân phối chuẩn
Phân phối nhị thức
Phân phối Poisson
Phân phối nhị thức
Định nghĩa (Binomial Distribution)
Thực hiện n phép thử độc lập, cho biết biến cố A xảy ra ở mỗi phép thử
với xác suất không đổi là p.
Gọi X là số lần biến cố A xảy ra trong số n phép thử. Khi đó X có phân
phân phối nhị thức, kí hiệu X ∼ B(n; p). Trường hợp n=1, ta được phân
phối Bernoulli.
Ta có
1 X(Ω) = {0..n}
2 P(X = k) = Cknpkqn−k với k ∈ X{Ω}, q = 1− p
3 EX = np
4 VarX = npq
5 ModX = n0 với (n+ 1)p− 1 ≤ n0 ≤ (n+ 1)p
Nguyễn Ngọc Phụng - Trường Đại Học Ngân Hàng TPHCM XÁC SUẤT THỐNG KÊ
Các phân phối xác suất thông dụng
Phân phối chuẩn
Phân phối nhị thức
Phân phối Poisson
Phân phối nhị thức
Ví dụï:
Một người mỗi ngày đi bán hàng ở 5 nơi khác nhau. Xác suất bán được
hàng ở mỗi nơi là 0,3.
a. Tính xác suất người đó bán được hàng trong một ngày.
b. Trung bình mỗi năm người đó đi bán hàng 300 ngày. Tìm số ngày
bán được hàng nhiều khả năng nhất trong một năm của người đó.
Nguyễn Ngọc Phụng - Trường Đại Học Ngân Hàng TPHCM XÁC SUẤT THỐNG KÊ
Các phân phối xác suất thông dụng
Phân phối chuẩn
Phân phối nhị thức
Phân phối Poisson
Phân phối Poisson
Định lý (Poisson)
Xét một dãy biến ngẫu nhiên độc lập {Xn} : Xn ∼ B(n; p(n)),np(n) = λ.
Khi đó Xn
F→P(λ).
Trong đó P(λ) là phân phối Poisson với thông số λ. X ∼ P(λ) thỏa
1 X(Ω) = N
2 P(X = k) = e−λ.λ
k
k!
3 EX = λ
4 VarX = λ
5 ModX = n0 với λ− 1 ≤ n0 ≤ λ
Điều này có nghĩa trong thực hành khi X ∼ B(n; p) với n đủ lớn và p khá
nhỏ sao cho np < 5 thì ta có thể xấp xỉ X ∼ P(λ) với λ = np
Nguyễn Ngọc Phụng - Trường Đại Học Ngân Hàng TPHCM XÁC SUẤT THỐNG KÊ
Các phân phối xác suất thông dụng
Phân phối chuẩn
Phân phối nhị thức
Phân phối Poisson
Xấp xỉ phân phối nhị thức bằng phân phối Poisson
Ví dụï:
Một máy sản xuất sản phẩm tự động với khả năng sản xuất ra một phế
phẩm ở mỗi lần sản xuất là 0, 1%. Cho máy này sản xuất 1000 sản
phẩm. Tính xác suất
a. Có đúng 2 phế phẩm trong số đó.
b. Có ít nhất 5 phế phẩm trong số đó.
Nguyễn Ngọc Phụng - Trường Đại Học Ngân Hàng TPHCM XÁC SUẤT THỐNG KÊ
Các phân phối xác suất thông dụng
Phân phối chuẩn
Phân phối nhị thức
Phân phối Poisson
Định lý (Moivre-Laplace)
Xét một dãy biến ngẫu nhiên độc lập {Xn} : Xn ∼ B(n; p). Khi đó
X F→N(µ;σ2) với µ = np, σ = √npq
Điều này có nghĩa trong thực hành khi X ∼ B(n; p) với n đủ lớn sao cho
np ≥ 5, nq ≥ 5 thì ta có thể xấp xỉ X ∼ N(µ;σ2)
1 P(X = k) ≈ 1σ f( k−µσ )
2 P(k1 ≤ X < k2) ≈ ϕ( k2−µσ )− ϕ( k1−µσ )
Nguyễn Ngọc Phụng - Trường Đại Học Ngân Hàng TPHCM XÁC SUẤT THỐNG KÊ
Các phân phối xác suất thông dụng
Phân phối chuẩn
Phân phối nhị thức
Phân phối Poisson
Nguyễn Ngọc Phụng - Trường Đại Học Ngân Hàng TPHCM XÁC SUẤT THỐNG KÊ