Đề tài Phân tích cây chuyển gen

Công nghệ sinh học hiện đại sử dụng kỹ thuật di truy ền đã đóng góp đáng kể trong việc cải tạo năng suất chất lượng cây trồng. Hiện nay có rất nhiều cây trồng là sản phẩm của công nghệ sinh học được thương mại trên thế giới đã khẳng định tiềm năng và khả năng phát triển của lĩnh vực này. Trong các kỹthuật ứng dụng công nghệ sinh học vào nâng cao năng suất, chất lượng giống cây không thể không kể đến kỹ thuật chuyển gen thực vật.

pdf21 trang | Chia sẻ: vietpd | Lượt xem: 1656 | Lượt tải: 3download
Bạn đang xem trước 20 trang tài liệu Đề tài Phân tích cây chuyển gen, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
1 MỞ ĐẦU Công nghệ sinh học hiện đại sử dụng kỹ thuật di truyền đã đóng góp đáng kể trong việc cải tạo năng suất chất lượng cây trồng. Hiện nay có rất nhiều cây trồng là sản phẩm của công nghệ sinh học được thương mại trên thế giới đã khẳng định tiềm năng và khả năng phát triển của lĩnh vực này. Trong các kỹ thuật ứng dụng công nghệ sinh học vào nâng cao năng suất, chất lượng giống cây không thể không kể đến kỹ thuật chuyển gen thực vật. Ngày nay kỹ thuật chuyển gen đã được áp dụng rộng rãi trong việc chuyển các gen hữu ích vào cây trồng tạo ra các cây trồng có nhiều ưu điểm vượt trội hơn hẳn so với loài ban đầu. Trong khoảng thời gian từ năm 1996 đến năm 2005, tỷ lệ diện tích trồng cây chuyển gen ở các nước đang phát triển đều tăng hàng năm, từ 1,7 triệu hecta (1996) lên 90 triệu hecta (2005) chiếm hơn 1/3 diện tích đất trồng cây nông nghiệp. Điều này cho thấy ngày càng có nhiều nông dân tại các nước phát triển và đang phát triển chấp nhận và trồng cây chuyển gen. Số nước trồng cây biến đổi gen đã tăng gấp 3 lần trong vòng 9 năm (từ 6 nước năm 1996 đến 21 nước năm 2005) (James, 2007). Kỹ thuật chuyển gen thực vật cho phép đưa một hoặc nhiều gen có đặc điểm ưu việt từ những loài có thể rất khác nhau về di truyền vào bộ gen của cây nhận trong một thời gian ngắn. Có nhiều phương pháp chuyển gen vào thực vật đã được thử nghiệm tuy nhiên hiện nay 2 phương pháp được sử dụng rộng rãi hơn cả là chuyển gen bằng súng bắn gen và chuyển gen gián tiếp thông qua vi khuẩn Agrobacterium tumefacien. Chuyển gen thông qua vi khuẩn có ưu điểm dễ tiến hành, khả năng chuyển nạp cao và tiết kiệm chi phí vì vậy nó được tiến hành ở hầu khắp các phòng thí nghiệm. Có nhiều quy trình chuyển gen đã được xây dựng cho rất nhiều các loại cây trồng khác nhau như thuốc lá, cà chua, khoai tây, mía, sắn… Một quy trình chuyển gen thực vật bao gồm các bước chính sau: (1) Phân lập gen mong muốn từ một sinh vật bất kỳ; (2) Tạo dòng và thiết kế vector chuyển gen mang đoạn gen mong muốn đó; (3) Biến nạp vector chuyển gen vào thực vật nhận và (4) Chọn lọc, phân tích biểu hiện của gen chuyển. Chuyển gen được hiểu đẩy đủ là: (i) gen ngoại lai (gen chuyển) phải được dung hợp vào hệ gen tế bào chủ; (ii) gen chuyển phải được biểu hiện ở tế bào chủ; (iii) gen chuyển phải được di truyền cho các thế hệ sau, trong mỗi thế hệ 2 sản phẩm của gen chuyển cũng phải được biểu hiện; và (iv) sản phẩm biểu hiện của gen chuyển phải thể hiện được chức năng sinh học. Chính vì vậy quá trình chọn lọc, phân tích cây chuyển gen trong mỗi thế hệ có thể được thực hiện theo ba nội dung sau: (1) Xác định sự có mặt của gen chuyển trong tế bào cây chủ (cây mang gen chuyển); (2) Kiểm tra sự biểu hiện của gen chuyển thông qua xác định sản phẩm biểu hiện là mRNA và protein; (3) Phân tích chức năng sinh học của gen chuyển. Mỗi nội dung có các phương pháp, kỹ thuật phân tích tương ứng, phù hợp và trong thực tiễn có thể tiến hành các phương pháp trong phòng thí nghiệm, nhà lưới hoặc đồng ruộng. Qua các thế hệ, cần phân tích, đánh giá và xác định đặc điểm di truyền của gen chuyển (sự di truyền, sự phân ly), phân tích đặc tính di truyền của cây chuyển gen. Hình 1. Mô tả các bước tiến hành và phương pháp phân tích cây chuyển gen 3 1. CÁC PHƢƠNG PHÁP ĐÁNH GIÁ CÂY CHUYỂN GEN Ở MỨC ĐỘ PHÒNG THÍ NGHIỆM Việc xác định nguyên liệu thu được từ hệ thống tái sinh sau biến nạp gen có phải là cây chuyển gen hay không là rất cần thiết và phải tiến hành đầu tiên. Trước hết, chọn lọc các mô, cây chuyển gen bằng các chỉ thị chọn lọc dựa vào các gen chỉ thị phải được tiến hành. Sau đó, sử dụng kỹ thuật PCR với cặp mồi đặc hiệu của gen chuyển để xác định sự có mặt của gen trong tế bào cây chuyển gen. Muốn xác định số copy được đưa vào genome cây tái sinh phải thực hiện phép lai phân tử Southern mà mẫu dò là đoạn gen chuyển được đánh dấu huỳnh quang còn DNA nhân cao phân tử được tách từ cây chuyển gen. Xác định gen chuyển có được phiên mã sang mRNA hay không có thể thực hiện bằng RT- PCR với cặp mồi đặc hiệu của gen chuyển và khuôn là cDNA từ RNA tổng số của cây cần kiểm tra hoặc lai Northern giữa mẫu dò là đoạn DNA của gen đánh dấu huỳnh quang và RNA toàn phần của mô cây chuyển gen. Và bước cuối cùng là xác định gen chuyển có biểu hiện và tạo sản phẩm cuối cùng của nó bằng kỹ thuật lai Western giữa protein của cây chuyển gen và kháng thể đặc hiệu với protein đó được tinh sạch từ nguồn khác. 1.1. ĐÁNH GIÁ CÂY CHUYỂN GEN BẰNG TÍNH KHÁNG CHẤT CHỌN LỌC Hầu hết các vector chuyển gen đều được thiết kế hệ thống gen chọn lọc kèm theo gen đích cho phép sàng lọc các mô, cây mang gen ở giai đoạn sớm bằng biểu hiện kháng của gen đó với các chất chọn lọc. Các gen chọn lọc có thể là các gen kháng kháng sinh, kháng thuốc diệt cỏ, gen chỉ thị màu hoặc gen chuyển hóa các cơ chất chọn lọc. Thực chất phân tích tính kháng của chất chọn lọc (kháng sinh, chất diệt cỏ) là chọn dòng tế bào, mô và cây mang tính kháng với chất chọn lọc thông qua hoạt động của gen chuyển. Chất chọn lọc có thể là kháng sinh như kanamycine khi dùng gen nptII hay hygromycine khi dùng gen hpt hoặc thuốc diệt cỏ basta khi dùng gen bar. Bước phân tích này có thể áp dụng cho mọi giai đoạn sau khi biến nạp từ trạng thái đơn bào đến mô sẹo, chồi tái sinh cây hoàn chỉnh hay cây non gieo từ hạt. Cách thức tiến hành đơn giản: chỉ bổ sung chất theo nồng độ nhất định vào môi trường nuôi cấy rồi quan sát ảnh hưởng của chất chọn lọc lên mô hoặc cây. Biểu hiện thường thấy đối với mô không mang gen là mất khả 4 năng tạo lục lạp rồi sau đó chuyển nâu đen và chết (hình 2.1(B)). Còn chồi sẽ không thể tạo rễ nếu không mang gen chuyển mặc dù được chuyển sang môi trường có nồng độ chất kích thích ra rễ cao vì bộ rễ rất nhạy cảm với chất chọn lọc. Hình 1.1. Mô sẹo của cây cao lương chuyển gen (A) và đối chứng (B) trên môi trường có chất chọn lọc (Tuong Van Nguyen, 2008) Phương pháp thử tính kháng đối với các chất chọn lọc còn được phát triển thành phương pháp tạo vết cháy trên lá. Chất chọn lọc được sử dụng với nồng độ cao hơn khoảng 2 – 5 lần so với thử in vitro và thường bổ sung thêm Twin 20 để tăng khả năng bám dính bề mặt sau đó dùng bút lông quét lên lá của cây cần thử, cũng có thể dùng một sợi chỉ bông kích thước lớn hơn chỉ bình thường, thấm dịch thuốc rồi vắt sợi chỉ qua nhiều lá của nhiều cây. Sau 3 – 5 ngày có thể thấy nơi bôi thuốc hoặc sợi chỉ vắt qua trên các cây không mang gen kháng thuốc hình thành các vết trắng hoặc nâu trên mặt lá do bị mất diệp lục. Để đảm bảo chính xác phương pháp này thường được tiến hành lặp lại 2 – 3 lần. (a) (b) Hình 1.2. Thử tính kháng kanamycin của bông chuyển gen bằng tạo vết cháy trên lá (Lê Trần Bình, 2008). (a) bông chuyển gen; (b) đối chứng 5 Ngoài ra, Việc đưa một gen chỉ thị mã hóa cho một enzyme trong vector chuyển gen cho phép dễ dàng nhận biết mẫu mang gen khi nhuộm bằng chất màu. Hệ thống GUS (gus, gusA và uidA) mã hóa cho protein β-glucuronidase - một phân tử homotetramer lần đầu tiên được phân lập từ E. coli (Jefferson et al., 1986). β-glucuronidase thường được sử dụng làm chỉ thị chọn lọc để nhận biết cây chuyển gen bởi ưu điểm dễ nhận biết thông qua nhuộm màu, phản ứng có độ nhạy và ổn định cao đồng thời dễ tiến hành định lượng. Ngày nay, việc sử dụng GUS trong chuyển gen thực vật ngày càng được tiến hành rộng rãi. Nhất là trong những thí nghiệm khảo sát quy trình chuyển gen vào một giống cây mới (Đỗ Tiến Phát và cs, 2008; Lopez et al., 2004). Ngay sau khi GUS được đưa vào thử nghiệm trong nhận biết cây chuyển gen, nó nhanh chóng được phát triển thành hệ thống chỉ thị cho nhiều đối tượng chuyển gen thực vật (Jefferson et al., 1987) vì ngoài tính nhạy và bền của enzyme nó còn dễ dàng thực hiện bằng các kỹ thuật khối phổ, so màu và phân tích tế bào học. Hơn nữa hầu như không có hoặc rất ít hoạt động của GUS được ghi nhận ở hầu hết mô thực vật bậc cao (Jefferson et al., 1987, Hu et al., 1990; Kosugi et al., 1990; Muhich, 1998). Trong thực vật GUS hoạt động như một gen hỗn hợp nhờ một promoter khởi động quá trình sao mã của trình tự uidA và điều chỉnh biểu hiện gen. Sự biểu hiện của gen sẽ được nhận diện bởi một chất có tên là 5-bromo-4-chloro-3- indolyl-β-D-glucuronide (X-Gluc) hoặc 4-methyl-umbelliferyl-β-D-glucuronide (MUG) trong thời gian ngắn. Một vài hạn chế đã được ghi nhận trong và sau khi xác định hoạt động của GUS trong mô chuyển gen đó là: hoạt tính nền (Hu et al., 1990; Thomasset et al., 1996), thường do sự khuếch tán các sản phẩm phản ứng hoặc hoạt động của chất nội sinh; Tính tự phát sáng (Thomasset et al., 1996), dập tắt hoặc im lặng (Serres et al., 1997) hoặc sự nhiễm khuẩn. Hình 1.3. Biểu hiện gen GUS trong mô bông chuyển gen (A) và đối chứng không chuyển gen (B) (Đỗ Tiến phát và cs., 2008) 6 Gần đây, một hệ thống chọn lọc khác được xem là “tích cực” có thể thay thế hệ thống chọn lọc dựa trên kháng sinh, chất diệt cỏ… bởi chất được sử dụng trong chọn lọc bản thân không gây độc cho thực vật và hoàn toàn không có hoạt động sinh học. Trong hệ thống chọn lọc tích cực, gen mã hóa một hoặc một số enzyme sẽ được đưa vào vector chuyển gen và cho phép các thực vật chuyển gen sử dụng các hợp chất chọn lọc trong môi trường để sinh trưởng, những tế bào không mang gen không sinh trưởng hoặc sinh trưởng rất chậm trên môi trường có chất chọn lọc. Một ví dụ về hệ thống chọn lọc tích cực được cung cấp bởi Joersbo và Okkels. Nghiên cứu này đã thử nghiệm với cây thuốc lá chuyển gen mã hóa β-glucuronidase bằng biến nạp gen vào lá thông qua Agrobacterim tumefaciens. Chất cytokinin glucuronide được cung cấp dưới dạng một cơ chất và bổ sung vào môi trường nuôi cấy. Chỉ những tế bào biểu hiện GUS mới có thể chuyển hóa cytokinin glucuronide, những tế bào này có thể tăng sinh và biệt hóa thành rễ trong khi những tế bào không có hoạt động của GUS không có hiện tượng này (Joersbo & Okkels, 1996). Rất nhanh sau đó, hệ thống chọn lọc tích cực trong chuyển gen được phát triển không chỉ sử dụng cơ chất liên quan đến hormone thực vật mà cả những chất như nguồn carbonhydrate và nitơ, những chất cần thiết trong nuôi cấy mô. Hệ thống chọn lọc sử dụng carbonhydrate là một trong những hệ thống chọn lọc tích cực phổ biến và dễ dàng nhất bởi vì thực vật sinh trưởng trên môi trường nuôi cấy đòi hỏi sự có mặt của nguồn carbon. Hơn nữa, hầu hết nguồn carbon thường dễ kiếm, rẻ và có thể thu nhận từ nhiều nguồn như sucrose, glucose và maltose. Nếu đưa một nguồn carbon thay thế cho carbon thực vật vẫn sử dụng vào trong môi trường, trong phần lớn các trường hợp nghiên cứu, tế bào thực vật sẽ không có khả năng phát triển và chết do các hợp chất sẽ được chuyển hóa và tạo sản phẩm trung gian làm thực vật nuôi cấy không thể sử dụng để phát triển. Ví dụ khi manose được dùng làm chất chọn lọc nó sẽ nhanh chóng được chuyển hóa thành manose-6-phosphate (M6P), một chất thực vật không thể hấp thụ chuyển hóa, bởi hoạt động của hexokinase. Trong trường hợp này, nếu thực vật có mang gen manA của E.coli mã hóa cho phosphomanose isomerase (PMI) thì PMI sẽ chuyển hóa M6P thành fructose-6-phosphate. Hệ thống chọn lọc PMI đã được triển khai hiệu quả khi tiến hành chuyển gen vào củ cải đường, ngô, lúa, lúa mì, Arabidopsis (Joersbo et al., 1998; Negrotto et al., 2000; Wang et al., 2000; Wringht et al., 2001; Lucca & Potrykus, 2001) và rất nhiều thực vật 7 hai lá mầm cũng như một lá mầm khác. Hiện nay, cả hai hệ thống chọn lọc tích cực và không tích cực đều được sử dụng trong chuyển gen thực vật (Brasileiro & Aragao, 2001). Phương pháp chọn lọc, phân tích cây chuyển gen bằng các chất chọn lọc mặc dù dễ thực hiện, chi phí thấp tuy nhiên đây chỉ là phương pháp sử dụng ban đầu để loại bớt những cây không mang gen trong quần thể cây tái sinh sau nuôi cấy vì phương pháp này không cho biết các gen cần chuyển đã được đưa vào cây hay chưa, các gen đưa vào có hoạt động không… Chính vì vậy cần phải có những phân tích sâu hơn ở mức độ phân tử. 1.2. PHÂN TÍCH CÂY CHUYỂN GEN BẰNG SINH HỌC PHÂN TỬ Trên nguyên tắc gen ngoại lai khi được biến nạp vào tế bào có thể tồn tại trong tế bào chủ ở 3 trạng thái: (1) Tạm thời ở dạng DNA tự do; (2) Lâu dài dưới dạng một thể plasmid độc lập tự nhân và (3) ổn định như một đoạn DNA của genome trong tế bào chủ và được nhân lên theo dạng tương hợp hay không tương hợp. Đây là trạng thái mong muốn nhất khi tạo cây chuyển gen vì tính bền vững của thể biến nạp, nhưng nó hoàn toàn phụ thuộc vào quá trình tái tổ hợp. Hầu hết các nghiên cứu biến nạp gen thuộc nhân vẫn có thể phát hiện thấy hiện tượng nhân không tương hợp đối với gen lạ khi hòa đồng vào DNA nhân do vị trí đoạn gen lạ được ghép nối ảnh hưởng đến biểu hiện của chính nó hay gen chủ gần đó. Chính vì thế, các phương pháp sinh học phân tử nhằm xác định sự có mặt của gen và biểu hiện của gen đó trong tế bào là bước làm rất cần thiết. 1.2.1. Phân tích cây chuyển gen bằng kỹ thuật PCR PCR (Polymerase chain reaction) được Kary B Mullis phát hiện ra năm 1983. Đây là phương pháp trong ống nghiệm để tổng hợp các trình tự DNA đặc hiệu nhờ enzyme, sử dụng hai mồi oligonucleotide để khuếch đại vùng DNA quan tâm nằm giữa hai mồi bằng cách lặp lại nhiều chu kỳ với các bước biến tính 2 mạch DNA khuôn, bắt cặp các mồi và kéo dài các sợi. Kỹ thuật PCR đơn giản dễ thực hiện với hầu hết các phòng thí nghiệm được trang bị máy PCR. Trong phân tích cây chuyển gen, gen chuyển đã được biết trình tự vì vậy chỉ cần sử dụng cặp mồi đặc hiệu cho gen đó và tách chiết DNA từ mẫu thực vật cần xác định làm khuôn là có thể tiến hành PCR. Sử dụng plasmid mang gen chuyển làm đối chứng, nếu sản phẩm PCR khi điện di có kích thước đúng như dự kiến và bằng với đối chứng thì mẫu phân tíc được coi là dương tính. Tuy nhiên, PCR dương tính không đồng nghĩa với chuyển gen thành công vì có nhiều cách để 8 giải thích sự có mặt của DNA trong mẫu phân tích: (1) Vi khuẩn A. tumefaciens mang gen chuyển có thể còn tồn tại trong khối mô hay trong các gian bào của mẫu phân tích. Hiện tượng này xuất hiện ở nhiều loại đối tượng và được gọi là dương tính giả. Nếu mẫu phân tích của thực vật đã qua nhân giống hữu tính tức đã qua một vài thế hệ thì hiện tượng này được loại trừ. (2) Gen chuyển tồn tại tự do trong tế bào chất (có thể biến mất qua sinh sản hữu tính). (3) Gen chuyển không hoạt động, tức không được phiên mã và biểu hiện ra protein có chức năng sinh học. Chính vì những lý do trên mà kết quả PCR mới chỉ có giá trị định hướng ban đầu khi phân tích cây chuyển gen. Tuy nhiên, kỹ thuật PCR lại tỏ ra hữu dụng đối với việc phân tích phát hiện các mẫu lương thực phực phẩm biến đổi gen (genetic modify origanism- GMO). Để phục vụ việc xác định GMO, PCR còn được phát triển còn thành kỹ thuật multiplex PCR (MPCR) (Matsuoka et al., 2001). Với việc sử dụng đồng thời nhiều cặp mồi nhận biết các gen khác nhau (promoter, terminator, gen chọn lọc, gen đích…) trong một phản ứng, MPCR cho phép phát hiện đồng thời nhiều trình tự đích nếu mẫu có mang các gen đó. Thông thường các cặp mồi được sử dụng trong multiplex PCR là mồi P35S, TNOS, NPT-II, GUS, EPSPS. Nếu kết quả dương tính với bất cứ cặp mồi nào thì mẫu cần xác định rất có thể đã được chuyển gen. 1.2.2. Phƣơng pháp xác định số copy trong cây chuyển gen Lai Southern để xác định số copy trong cây chuyển gen là phương pháp tin cậy và thông dụng nhất. Ngoài việc khẳng định sự tồn tại của gen chuyển trong genome cây nhận thông qua lai DNA tổng số của mẫu phân tích với DNA mẫu dò nó còn cho biết số lượng bản sao đã được đưa vào cây. Mẫu dò chính là một đoạn của gen chuyển có kích thước từ 100 – 300 bp được đánh dấu phóng xạ hay huỳnh quang. Các bước chính trong kỹ thuật Southern bao gồm: (1) tách chiết DNA tổng số của mẫu cần phân tích; (2) Xử lý DNA tổng số với 1 – 2 enzyme giới hạn mà điểm cắt không nằm trên gen; (3) Điện di trên gel agarose; (4) chuyển lên màng nitrosocellulose hay còn gọi là blotting; (5) Tổng hợp sợi DNA mẫu dò có đánh dấu phóng xạ hay huỳnh quang bằng PCR với mồi ngẫu nhiên; (6) Lai mẫu dò với màng DNA và (7) Hiển thị trên phim X quang và phân tích kết quả. 9 Hình 1.4. Mô tả các bước trong kỹ thuật lai southern Hình 1.5. Kết quả lai Southern hai dòng cao lương chuyển gen SB1 và SB4 (Tuong Van Nguyen, 2008) Hình 1.5 hiển thị kết quả lai southern hai dòng cao lương chuyển gen SB1 và SB4 (Tuong Van Nguyen, 2008) cho thấy cây dòng SB4 xuất hiện một vạch còn SB1 xuất hiện nhiều vạch sản phầm lai điều đó có nghĩa dòng SB4 có một bản sao gen chuyển trong genome, đây là kết quả mong muốn trong chuyển gen vào thực vật. Gần đây, một kỹ thuật thường sử dụng để hỗ trợ cho lai Southern trong việc phát hiện số copy trong cây chuyển gen là Quantitave real-time PCR (Q- PCR). Q-PCR có thể tiến hành đồng thời nhiều mẫu cần phân tích, ngoài ra còn dễ thực hiện, tiết kiệm nguyên liệu, chi phí và công sức (James et al., 2002; Bubner et al., 2004). Real-time PCR là khuếch đại DNA diễn ra theo từng chu kỳ nhiệt được theo dõi trực tiếp gồm 2 quá trình diễn ra đồng thời: (1) Khuếch đại DNA bằng PCR và (2) Đo độ phát quang tỷ lệ thuận với số lượng phân đoạn DNA được tạo thành. Nguyên lý chủ yếu của real-time PCR là dựa trên cơ sở phát hiện và định lượng thể thông báo huỳnh quang. Hàm lượng sản phẩm PCR bắt đầu được tăng cao lên từ chu kỳ ngưỡng tương quan chặt chẽ với hàm lượng DNA khuôn ban đầu. Có nhiều chất huỳnh quang đã được tìm ra và sử dụng rộng rãi. Một trong số chất được sử dụng rộng rãi nhất là TaqMan. TaqMan real- time PCR là một kỹ thuật trong đó sự tích lũy sản phẩm PCR đã được kiểm tra bởi sự có mặt của phát sáng huỳnh quang trong mỗi phản ứng. Tức là, trong thí nghiệm TaqMan, một mẫu dò đánh dấu 2 đầu (TaqMan) được thiết kế để lai với 10 đoạn trình tự giữa hai mồi. Mẫu dò này được tổng hợp với đầu 5‟ phát quang và đầu 3‟ có hoạt tính dập tắt huỳnh quang. Khi các mẫu dò còn nguyên vẹn thì chất phát ra từ những chất phát huỳnh quang sẽ bị dập tắt bởi đầu dập tắt và hiệu ứng huỳnh quang sẽ thấp không nhận biết được. Trong mỗi chu kỳ phản ứng PCR, các polymerase kéo dài từ một mồi bắt gặp đoạn lai và phân cắt mẫu dò từ 5‟-3‟ nhờ hoạt động exonuclease của Taq polymerase. Mẫu dò giải phóng ra chất huỳnh quang và phát quang. Kết quả là sự phát quang có thể định lượng sau mỗi phản ứng có liên quan đến lượng sản phẩm PCR được tích lũy. Hình 1.6. Mô tả phương pháp TaqMan định lượng sản phẩm PCR Để sử dụng real-time PCR trong xác định số copy của cây chuyển gen người ta dựa vào mối tương quan giữa giá trị Ct (chu kỳ ngưỡng) và số copy trong DNA mẫu ban đầu. Có nhiều phương pháp khác nhau đã được thử nghiệm, có thể dựa vào Ct đo được với đường chuẩn thu được từ các nồng độ pha loãng khác nhau của một plasmid mang trình tự gen chuyển mà đã biết trọng lượng phân tử và nồng độ DNA chính xác từ đó tính tương đối số copy của mẫu cần kiểm tra. Hoặc một phương pháp tương đối hiệu quả trong việc xác định số copy bằng real-time PCR là phương pháp dựa vào giá trị Ct tương đối (2-ΔΔCt) (Ingham et al., 2001; Bubner et al., 2004). Phương pháp này dựa vào ΔCt là độ chênh lệch giữa Ct của cây chuyển gen (Ctt) và Ct của mẫu chuẩn là mẫu mang gen nội sinh mà đã biết chắc chỉ có một copy (Cte). Trong cùng một phản ứng với hiệu suất như nhau bằng cách làm chuẩn nồng độ DNA ban đầu đưa vào phản ứng, tất cả các mẫu có cùng giá trị ΔCt với mẫu chuẩn sẽ chứa một bản sao của gen chuyển. 1.2.3. Phân tích biểu hiện gen 11 Nghiên cứu biểu hiện của gen chuyển là rất cần thiết vì đây chính là mục đích của chuyển gen, nếu gen được đưa vào genome mà không được biểu hiện thì coi như không có giá trị. Biểu hiện gen trong sinh học phân tử là quá trình hoạt động của gen đ
Tài liệu liên quan