Tài liệu điều chế và nghiên cứu hoạt tính các xúc tác Zeolitx, Zeolity, Zeolitp

Trong nửa cuối thế kỷ XX người ta đã chứng kiến sự ra đời và phát triển mạnh mẽ của một ngành công nghệ mới. Đó là lĩnh vực nghiên cứu và ứng dụng các Zeolít, đặc biệt là trong công nghệ Lọc-Hoá Dầu. Zeolít được sử dụng làm chất xúc tác có hoạt tính và độ chọn lọc cao, dễ tách khỏi sản phẩm và không gây ô nhiễm môi trường. Với những ưu điểm như vậy nó đã thúc đẩy nhiều nhà khoa học đi sâu vào biến tính và tìm kiếm những Zeolít mới nhằm mục đích đưa vào ứng dụng xúc tác trong công nghiệp [8]. Xúc tác Cracking hiện đang đối đầu với hai thách thức lớn: 1. Yêu cầu nghiêm ngặt về môi trường đòi hỏi xăng Cracking vẫn đảm bảo chỉ số octan cao nhưng không chứa hợp chất của chì và giảm tối thiểu hàm lượng hydrocacbon thơm. 2. Công nghiệp hoá dầu phát triển mạnh đòi hỏi một nguồn nguyên liệu dồi dào mà quan trọng là các olefin. Ngày nay, hầu hết các chất xúc tác Cracking dầu mỏ đều chứa hai hợp phần chính là Zeolít và chất nền (matrix). Sự nổi trội của Zeolít với vai trò là một chất thêm định hướng cho việc tăng chỉ số octan và tăng hiệu suất tạo olefin. Đặc tính của Zeolít là diện tích bề mặt riêng khá lớn, hệ thống mao quản đồng đều, độ axit và độ đồng đều cao, khả năng chọn lọc hình dạng rất tốt [2]. Đây là một trong những vật liệu vô cơ mao quản lý tưởng trong tương lai. ở Việt Nam, ngành công nghiệp lọc hoá dầu đang bắt đầu xây dựng. Các quy định về sử dụng xăng không pha chì trong toàn quốc cũng đang được thực thi. Tình hình này đòi hỏi một nhu cầu rất cao cả về số lượng và chất lượng của xúc tác Cracking. Việt Nam là nước có tiềm năng lớn về nguyên liệu chế tạo xúc tác Cracking (các mỏ khoáng sét, đất hiếm với trữ lượng dồi dào). Trong khi đó số lượng nghiên cứu về xúc tác Zeolít cũng như hoạt tính của Zeolít còn hạn chế. Do vậy, điều chế và nghiên cứu xúc tác cho phản ứng là một trong những vấn đề quan trọng và có ý nghĩa rất lớn về mặt khoa học, thực tiễn và mang tính thời sự. Do đó, trong khuôn khổ bản đồ án này em điều chế và nghiên cứu hoạt tính của các xúc tác ZeolítX, ZeolítY, ZeolítP trên phản ứng Cracking hydrocacbon (n-Hecxan). Hy vọng rằng, với sự phát triển của khoa học kỹ thuật cùng với việc công nghiệp hoá, hiện đại hoá đất nước, việc ứng dụng xúc tác Zeolít sẽ làm góp phần đáng kể trong công cuộc xây dựng đất nước.

doc50 trang | Chia sẻ: ngatran | Lượt xem: 1517 | Lượt tải: 3download
Bạn đang xem trước 20 trang tài liệu Tài liệu điều chế và nghiên cứu hoạt tính các xúc tác Zeolitx, Zeolity, Zeolitp, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
MỞ ĐẦU Trong nửa cuối thế kỷ XX người ta đã chứng kiến sự ra đời và phát triển mạnh mẽ của một ngành công nghệ mới. Đó là lĩnh vực nghiên cứu và ứng dụng các Zeolít, đặc biệt là trong công nghệ Lọc-Hoá Dầu. Zeolít được sử dụng làm chất xúc tác có hoạt tính và độ chọn lọc cao, dễ tách khỏi sản phẩm và không gây ô nhiễm môi trường. Với những ưu điểm như vậy nó đã thúc đẩy nhiều nhà khoa học đi sâu vào biến tính và tìm kiếm những Zeolít mới nhằm mục đích đưa vào ứng dụng xúc tác trong công nghiệp [8]. Xúc tác Cracking hiện đang đối đầu với hai thách thức lớn: 1. Yêu cầu nghiêm ngặt về môi trường đòi hỏi xăng Cracking vẫn đảm bảo chỉ số octan cao nhưng không chứa hợp chất của chì và giảm tối thiểu hàm lượng hydrocacbon thơm. 2. Công nghiệp hoá dầu phát triển mạnh đòi hỏi một nguồn nguyên liệu dồi dào mà quan trọng là các olefin. Ngày nay, hầu hết các chất xúc tác Cracking dầu mỏ đều chứa hai hợp phần chính là Zeolít và chất nền (matrix). Sự nổi trội của Zeolít với vai trò là một chất thêm định hướng cho việc tăng chỉ số octan và tăng hiệu suất tạo olefin. Đặc tính của Zeolít là diện tích bề mặt riêng khá lớn, hệ thống mao quản đồng đều, độ axit và độ đồng đều cao, khả năng chọn lọc hình dạng rất tốt [2]. Đây là một trong những vật liệu vô cơ mao quản lý tưởng trong tương lai. ở Việt Nam, ngành công nghiệp lọc hoá dầu đang bắt đầu xây dựng. Các quy định về sử dụng xăng không pha chì trong toàn quốc cũng đang được thực thi. Tình hình này đòi hỏi một nhu cầu rất cao cả về số lượng và chất lượng của xúc tác Cracking. Việt Nam là nước có tiềm năng lớn về nguyên liệu chế tạo xúc tác Cracking (các mỏ khoáng sét, đất hiếm…với trữ lượng dồi dào). Trong khi đó số lượng nghiên cứu về xúc tác Zeolít cũng như hoạt tính của Zeolít còn hạn chế. Do vậy, điều chế và nghiên cứu xúc tác cho phản ứng là một trong những vấn đề quan trọng và có ý nghĩa rất lớn về mặt khoa học, thực tiễn và mang tính thời sự. Do đó, trong khuôn khổ bản đồ án này em điều chế và nghiên cứu hoạt tính của các xúc tác ZeolítX, ZeolítY, ZeolítP trên phản ứng Cracking hydrocacbon (n-Hecxan). Hy vọng rằng, với sự phát triển của khoa học kỹ thuật cùng với việc công nghiệp hoá, hiện đại hoá đất nước, việc ứng dụng xúc tác Zeolít sẽ làm góp phần đáng kể trong công cuộc xây dựng đất nước. PHẦN I: TỔNG QUAN TÀI LIỆU I. Tổng quan về Zeolít I.1. Sơ lược lịch sử và sự phát triển của Zeolít . Zeolít bắt đầu được phát hiện vào năm 1756 đến nay đã hơn 3 thế kỷ. Năm 1756, Le Bron Bronstedt [13] là một nhà khoáng học người Thụy Điển đã phát hiện ra một loại khoáng mới với tên gọi là Zeolít, theo tiếng Hy Lạp “Zeo”: sôi, “Lithot”: đá, vì vậy Zeolít còn có nghĩa là đá sôi. Ông đã phát hiện được Zeolít nhờ hơi nước thoát ra khi nung khoáng này. Tuy nhiên mãi đến thế kỷ sau Zeolít mới bắt đầu được nghiên cứu kỹ ở phòng thí nghiệm. Vào năm 1932, Mac Bai [14] đã làm rõ hiệu ứng “Rây phân tử”, sau đó vào năm 1944, Barrer và Ibbitson đã chỉ ra rằng hiệu ứng này cho phép tách các n và iso parafin. Bắt đầu từ thời điểm đó các loại Zeolít được phục vụ cho công nghiệp. Đến năm 1956 người ta mới tổng hợp được các loại Zeolit đầu tiên. Vào những năm cuối thế kỷ XX này sự hiểu rõ về Zeolít tương đối sâu rộng. Đến nay đã có hơn 35 loại Zeolít tự nhiên được tìm thấy và rất nhiều Zeolít tổng hợp được ra đời [5]. Việc nghiên cứu các mặt Zeolít ngày càng tăng. Hiện nay đã có khoảng hơn 15.000 công trình đã công bố và hơn 10.000 phát minh sáng kiến về tổng hợp Zeolít cả về cấu trúc và ứng dụng nó. Đặc biệt riêng trong năm 2000 đến nay đã có hơn 1060 loại Zeolít tổng hợp mới ra đời. Như vậy, Zeolít có tầm quan trọng lớn lao trong khoa học và kỹ thuật. Trong tất cả các loại Zeolít hiện có, người ta đã biết rõ thành phần, tính chất ứng dụng, cấu trúc mạng tinh thể của nhiều loại Zeolít tự nhiên và Zeolít tổng hợp như: Zeolít A, Zeolít Y, Zeolít X, Zeolít ZSM-5, Zeolít ZSM-11,… I.2. Giới thiệu về Zeolít I.2.1. Khái niệm và phân loại. I.2.1.1. Khái niệm. Zeolít là hợp chất vô cơ dạng aluminosilicat tinh thể có cấu trúc không gian ba chiều, lỗ xốp đặc biệt và trật tự cho phép chúng phân chia (Rây) phân tử theo hình dạng và kích thước. Vì vậy, Zeolít còn được gọi là hợp chất rây phân tử. Thành phần chủ yếu của Zeolít là Si, Al, Oxi và một số kim loại kiềm, kiềm thổ khác. Công thức chung của Zeolít là: M2/nO . Al2O3 . x SiO2 . y H2O Trong đó: M: Cation có khả năng trao đổi. n: Hoá trị của cacbon. x: Tỉ số mol SiO2/Al2O3. y: Số phân tử nước trong đơn vị cơ sở ( khoảng từ 1 (12 ). Tỷ số x( 2 là sự thay đổi đối với từng loại Zeolít cho phép xác định thành phần và cấu trúc của từng loại. Ví dụ: Zeolít A có x = 2. Zeolít X có x = 2,3( 3. Zeolít Y có x = 3,1( 6. Mordenit tổng hợp có x ( 10. Đặc biệt các Zeolít họ pentasit có x=20(1000. Riêng đối với Zeolít ZSM-5 được tổng hợp dùng chất cấu trúc có 7(x(200.[16] Gần đây người ta đã tổng hợp được các loại Zeolít có thành phần đa dạng có tỷ lệ mol SiO2/Al2O3 cao thậm chí có những loại cấu trúc tương tự Zeolít mà hoàn toàn không chứa các nguyên tử nhôm như các silicatic… I.2.1.2. Phân loại Zeolit. Có nhiều cách phân loại Zeolít nhưng thông thường người ta phân loại theo nguồn gốc, kích thước mao quản và theo thành phần hóa học. Theo cách này có 5 nhóm: Zeolít nghèo Silic hoặc nhôm. Zeolít trung bình Silic. Zeolít giàu Silic. Rây phân tử Silic. Zeolít biến tính. + Phân loại theo nguồn gốc: Có 2 loại: Zeolít tự nhiên và Zeolít tổng hợp. - Zeolít tự nhiên thường kém bền và do thành phần hoá học biến đổi đáng kể nên chỉ có một vài loại Zeolít tự nhiên có khả năng ứng dụng thực tế như: Analcime, chabazite, hurdenite, clinoptilonit... và chúng chỉ phù hợp với những ứng dụng mà không yêu cầu tinh khiết cao. [4] - Zeolít tổng hợp như: ZeolítA, ZeolítX,ZeolítY,ZeolítZSM-5,ZSM-11... Zeolít tổng hợp có thành phần đồng nhất và tinh khiết, đa dạng về chủng loại nên được ứng dụng rất rộng rãi trong công nghiệp cũng như trong nghiên cứu. + Phân loại Zeolít theo kích thước mao quản: Việc phân loại Zeolít theo kích thước mao quản rất thuận tiện cho việc nghiên cứu ứng dụng Zeolít, theo cách này ta chia Zeolít ra làm 3 loại: Zeolít có mao quản rộng: đường kính mao quản từ 7A0 đến 8A0. Zeolít mao quản trung bình: từ 5A0 đến 6A0. Zeolít mao quản hẹp: dưới 5A0 + Phân loại Zeolít theo thành phần hoá học: Zeolít giàu Al: là loại Zeolít có tỉ số SiO2/Al2O3 ( 2. Theo quy luật Lowenstein xác định rằng: Trong cấu trúc Zeolít hai nguyên tử Al không thể tồn tại lân cận nhau. Nghĩa là trong cấu trúc Zeolít không thể tồn tại các liên kết Al-O-Al, mà chỉ tồn tại các liên kết -Si-O-Si- và -Si-O-Al-. Do vậy, tỷ số SiO2/Al2O3 là giới hạn dưới không có tỷ số SiO2/Al2O3 < 2 [4]. Khi tỷ số này gần 2 thì Zeolít được coi là giàu nhôm. Zeolít silic trung bình: Với Zeolít loại này tỉ lệ SiO2/Al2O3 = 4( 5 và có thể tới 10. Zeolít thuộc họ này là ZeolítX, ZeolítY, Sabazit ( 2,15 )... Zeolít giàu silic: Loại này tương đối bền nhiệt nên được sử dụng trong nhiều quá trình xúc tác có điều kiện khắc nghiệt, đó là các Zeolít thuộc họ ZSM, được tìm ra bởi hãng Mobil, tỉ lệ (SiO2/Al2O3) = 20( 200, đường kính mao quản từ 5,1 A0 đến 5,7 A0, cấu trúc khung của ZSM thường có khoảng 10 nguyên tử Al tương ứng với 1000 nguyên tố Si trong mạng. Ngoài ra có rất nhiều Zeolít tổng hợp khác có tỉ số Si/Al cao được tổng hợp nhờ sự có mặt của chất tạo cấu trúc (Template ) họ amin bậc 4: R4N+. Rây phân tử Silic. Là loại vật liệu có cấu trúc tinh thể hoặc tương ứng như aluminosilicat tinh thể nhưng hoàn toàn không chứa nhôm. Vật liệu này kị nước và không chứa các cation bù trừ điện tích (hoàn toàn không có tính chất trao đổi ion). Zeolit biến tính. Là Zeolít sau khi tổng hợp được người ta có thể dùng các phương pháp biến tính để biến đổi thành phần hoá học của Zeolít. Ví dụ như phương pháp tách nhôm ra khỏi mạng lưới tinh thể và thay thế vào đó là Silic hoặc nguyên tố có hoá trị 3 hoặc hoá trị 4 gọi là phương pháp tách nhôm. Theo tác giả [17] sự phân loại Zeolít tổng hợp theo thành phần hoá học được thống kê trong bảng 1. Việc phân chia Zeolít theo tỷ số SiO2/Al2O3 được coi là một đặc trưng quan trọng ảnh hưởng đến cấu trúc, tính chất lý hoá học của Zeolít. Bảng 1: sự biến đổi tính chất của Zeolit khi tỷ số SiO2/Al2O3 . tỷ số SiO2/Al2O3   1. Tính chất bền nhiệt tăng từ (700(1300)0C 2. Cấu trúc thay đổi từ vòng 4,6,8 đến vòng 5. 3. Tính chất bề mặt từ ưa nước đến kị nước . 4. Lực axít trên từng tâm axít tăng. 5.Dung lượng trao đổi ion giảm.   I.2.2. Cấu trúc của Zeolít . I.2.2.1. Đặc điểm cấu trúc của Zeolít . Zeolít có cấu trúc tinh thể, các Zeolít tự nhiên cũng như Zeolít tổng hợp có bộ khung được tạo thành bởi mạng lưới không gian 3 chiều của các tứ diện TO4 ( T là Si hoặc Al ). Mỗi tứ diện TO4 có 4 ion O2- bao quanh một cation T(Si, Al). Mỗi tứ diên liên kết với 4 tứ diện bên cạnh bằng cách góp chung các nguyên tử oxy ở đỉnh [18]. Trong tứ diện AlO4 có hoá trị 3 nhưng số phối trí là 4 nên tứ diện AlO4 mang một điện tích âm. Điện tích âm này được bù trừ bằng cation kim loại, còn gọi là cation bù trừ điện tích khung và thường là cation kim loại kiềm. Vì vậy, số cation kim loại hoá trị 1 trong thành phần hoá học của Zeolit chính bằng số nguyên tử nhôm (Al). Đơn vị cấu trúc cơ bản của Zeolit là các tứ diện TO4 chúng được biểu diễn ở hình 1: Tứ diện SiO4 Tứ diện AlO4 Hình 1: Đơn vị cấu trúc cơ bản của Zeolít. Các SBU (Secondary Building Unit) và các khối đa diện trong Zeolít được trình bày ở các hình 2 và 3. Các đơn vị cấu trúc thứ cấp SBU, được tạo ra do sự liên kết các tứ diện TO4 theo một trật tự xác định và tuân theo quy tắc thực nghiệm-Lowenstein. Hình 2: Các đơn vị cấu trúc cơ thứ cấp (SBU) trong cấu trúc Zeolit Hình 3:Một số đa diện có trong zeolít Các đơn vị cấu trúc thứ cấp SBU có thể là các vòng oxy gồm các vòng 4, 6, 8, 10, 12…cạnh hoặc các vòng kép 4x2, 6x2, 8x2, vv…Tuỳ theo cách ghép nối các SBU theo kiểu này hay kiểu kia mà sẽ tạo ra các loại Zeolít khác nhau [32]. Hình 4 chỉ ra cách ghép nối các đơn vị cấu trúc tạo ra Zeolít. Hình 4: các đơn vị cấu trúc và cách ghép nối tạo ra Zeolit. I.2.2.2. Phân loại cấu trúc Zeolit [12] Dựa trên cơ sở hình học của khung cấu trúc Zeolít, Smith, Fisher và Meier, Breck đã phân loại Zeolít thành 7 nhóm đơn vị SBU. Mỗi SBU đặc trưng cho một cách sắp xếp của tứ diện TO4. 7 nhóm phân loại đó là: Bảng 2: Nhóm đơn vị cấu trúc sơ cấp. Nhóm  Đơn vị cấu trúc sơ cấp (SBU)   1  Vòng 4 cạnh đơn, S4R   2  Vòng 6 cạnh đơn, S6R   3  Vòng 4 cạnh kép, D4R   4  Vòng 6 cạnh kép, D6R   5  Tổ hợp 4-1, đơn vị T5O10   6  Tổ hợp 5-1, đơn vị T8O16   7  Tổ hợp 4-4-1, đơn vị T10O20   Phương pháp phân loại này cho phép dễ dàng mô tả cấu trúc Zeolít bằng các đơn vị cấu trúc đa diện. I.3.3. Cấu trúc kênh trong Zeolít . Các sodalit ghép nối với nhau tạo thành một khoang rỗng các cửa sổ to, nhỏ khác nhau, nhờ đó mà Zeolít có cấu trúc “xốp”. Tập hợp không gian rỗng tuân theo một quy luật nhất định sẽ cấu tạo cấu trúc kênh của Zeolít. Bản chất của hệ mao quản trong Zeolít dehydrat hoá là rất quan trọng, nó xác định tính chất vật lý và hoá học của Zeolít Trong các Zeolít có 3 loại hệ thống mao quản như sau: * Hệ thống mao quản một chiều: Các mao quản không giao nhau thuộc loại này có họ Analeim (hình 5). Hình 5: Hệ thống mao quản 1 chiều không giao nhau trong Zeolit. Hình 6: Hệ thống mao quản 2 chiều trong khung Zeolít. * Hệ thống mao quản 3 chiều, có các mao quản cùng chiều, đường kính của các mao quản bằng nhau và không phụ thuộc vào hướng…Ví dụ faujasit (X,Y,A) (hình 7,8). Hình 7 :Hệ thống mao quản 3 chiều trong khung zeolít X(a) và Y(b).. Hình 8: Hệ thống mao quản 3 chiều trong zeolít. I .3 Cấu trúc một số zeolit cần nghiên cứu. I.3.1 Cấu trúc Zeolít X và Zeolít Y. Zeolít Y được Breck ( hảng carbide) phát minh vào năm 1964 [20]. Trong cấu trúc zeolít X, zeolít Y,các lồng sodalit có dạng bác diện cụt được sắp xếp theo kiểu kim cương Hình 8 .Mỗi nút mạng của zeolít X, zeolít Y đều là các bát diện cụt và mỗi bát diện cụt đó liên kiết một bác diện cụt khác ở 6 cạnh thông qua liên kết cầu oxy số mặt 6 cạnh của bác diện cụt là 10 .Do vậy, tồn tại 4 mặt 6 cạnh còn trống của mổi bát diện cụt trong zeolit X, Zeolít Y.  Hình 9: cấu trúc tinh thê của Zeolít X và Zeolít Y Số tứ diện Si04 và Al04- trong một ô mạng cơ sở của zeolítX, ZeolítY là 192,số nguyên tử oxy là 384.Sự phân biệt giữ zeolitX và zeolítY dựa vào tỷ số Si02/Al203 . Nếu tỷ số này bằng 2 ( 3 thì ta có zeolít X , cao hơn ta sẽ có zeolít Y. Công thức hoá học của một số ô mạng cơ sở của zeolít X và zeolit Y như sau. Zeolit X : Na86 [(Al02)86.(Si02)106].260 H20 . Zeolit Y : Na86 [(Al02)56.(Si02)136].260 H20 . Như vậy, zeolít X giàu nhôm hơn zeolítY mặt dù tổng các cation Si4+ và Al3+ đều bằng 192 và bằng số đỉnh của một ô mạng cơ sở ( mỗi đỉnh của một bát dịên cụt là Si hoặc Al ). Vì tỷ số SiO2/Al2O3 zeolít Y lớn hơn zeolít X nên dộ bền cơ nhiệt của zeolít Y cao hơn zeolít X ,do sự tạo thành liên kết giữa các mặt zeolít X và zeolít Y khác với zeolít A nên cấu trúc cũng khác .Đường kính của zeolít X và zeolít Y khoảng 12,7 A0 . Do liên kết ở các mặt 6 cạnh nên tồng tại ba dạng cữa sổ tương ứng với các mặt thông nhau với các hốc . Khi hai hốc thông nhau cữa sổ trong trường hợp này là lớn nhất với vòng 12 oxy kích thước 7,8 A0. Khi các hốc thông với nhau qua cữa sổ , trong trường hợp này có vòng 6 oxy vớ kích thước 2,2A0 [1] I.3.2 cấu trúc zeolít P . Zeolít P là loại zeolít có kích thước mao quản bé có khả nảng hấp phụ khí . Xúc tác zeolít P có công thức hoá học là . Na20.Al203.2,5.Si02.5H20 . Bảng 3 : Một số thông số cơ bản của zeolít [ 9 ] . Stt  Thông số  Giá trị   1  Tỉ lệ ( = Si02 / Al203  1,1 ( 2,5   2  đơn vị  S4R (Vòng 4 cạnh song song)   3  Kích thước mao quản  Theo hai hướng a và b là : (3,4 ( 4,4)A0 và (2,8 ( 4,9)A0   4  hấp phụ phân tử có kích thước max  H20   Hình 10 : các cấu trúc của zeolít P. I.4. Giới thiệu các phướng tổng hợp zeolít . Đã có rất nhiều công trình nghiên cứu công bố về các phương pháp tổng hợp zeolít .Việc tổng hợp zeolít đi từ nguồn nguyên liệu ban đầu gồm hai nguồn Si và Al riêng lẻ,hoặc có thể đi từ khoáng sét tự nhiên . Zeolít được hình thành trong quá trình thuỷ nhiệt ở nhiệt độ từ (50 ( 300) 0C [4]. Dưới đây sẽ giới thiệu về quá trình tổng hợp zeolít từ hai hướng kể trên I.4.1 Tổng hợp zeolít đi từ nguồn Si và Al riêng lẻ . Từ nguồn Si và Al ban đầu trong hai dung dịch riêng lẻ, sau khi trộn lẫn chúng với nhau trong môi trường có nhiệt độ và PH nhất định , gen aluminosilicat sẽ được hình thành . Sự hình thành gen là do quá trình ngưng tụ các liên kết ( Si -0H và ( Al - 0H để tạo ra các liên kết mới Si - 0–Si,Si–0 – Al dưói dạng vô định hình. Sau đó gen được hoà tan nhờ các tác nhân khoáng hoá (0H- ,F- ) tạo nên cá đơn vị cấu trúc thứ cấp (SPU).Trong các đIệu kiện thích hợp (như chất tạo cấu trú , nhiệt độ , áp xuất …) . Các SPU sẽ liên kết với nhau tạo nên các mầm tinh thể rồi các mầm này lớn dần lên thành các tinh thể hoàn chỉnh của zeolít Hình 11.  Hình 11:Sơ đồ quá trình tổng hợp zeolít từ hai nguồn Si và Al riêng lẻ . Tuỳ thuộc vào các kết nối của các SBU chúng ta sẽ thu được các kết nối có cấu trúc tinh thể khác nhau .Hình 10 mô tả cách ghép nối giữu các SBU và quá trình tạo mầm lớn lên của tinh thể . Nếu bác diện cụt được nối với nhau qua mặt tứ diện ta sẽ được zeolít có cấu trúc tinh thể loại zeolít A , còn nối qua mặt 6 cạnh sẽ được loại Zeolít Y [ 7] . Nguồn chứa zeolít ban đầu thường được sử dụng Na2Si03 , Si02 gel hoặc Si02 sol , (R0)4Si …và nguồn Al thưòng là NaAl02 , Al2 (S04)3 …Thành phần hỗn hợp tổng hợp thường biểu diễn thông qua các tỷ lệ 0H- / Si02 ; Na+/ Si02 ,R4N+/ Si02 ,,Si04 / Al203 . Bảng 4 : Trình bày các đIều kiện tổng hợp zeolít X ,zeolít Y mordenit . ( Tính theo mol chất phản ứng Al203) Zeolít  Na20  Si02  H20  T ,0C  T(h)  Si02/Al203   X  3,6  3,0  144  100  7  2,5   Y  8,0  20  320  100  7  5,0   Mordenit  6,3  27  61  100  168  12   I.4.2 Tổng hợp zeolít từ khoáng sét tự nhiên . Ngoài hướng tổng hợp zeolít đi từ nguồn Si và Al riêng lẻ đã trở thành phổ biến, một hướng nghiên cứu mới đã đượcc một số nhà khoa học quan tâm , đó là tổng hợp zeolít từ khoáng sét tự nhiên .Đặt biệt là khoáng sét mà ở đây là cao lanh . ( Thành phần hoá học của cao lanh . Đây là một khoáng sét tự nhiên ngậm nước mà thành phần chính là kaolinít , có công thức hoá học đơn giản là . Al203.2.Si02.2H20 . Công thức lí tưởng là : Al4(Si4010).(0H)8 . Với hàm lượng : Si02 = 46,54 . Al203 = 39,5%. và H20 = 13,96% . Tuy nhiên trong thiên thành phần lý tưởng này rất hiếm [ 4 ].trong cao lanh ngoài 3 thành phần chính kể trên thường xuyên có mặt Fe203 , Ti02 , Mg0 , và Ca0 ,ngoài ra còn có K20 , Na20 với hàm lượng nhỏ và các khoáng khác nhau : feldspar , limonit , quartz , anatase . So với các khoáng khác , lượng Al203 trong caolinite thường lớn hơn từ (36,83 ( 40,32),% còn lượng nước hấp phụ trên bề mặt , lượng K203và Mg0 thường rất nhỏ , tương ứng không vượt quá 2% ,1% và 1,2% [4] . Thành phần hoá học của kaolinit có ảnh hưởng tới cầu trúc tính chất và khả năng sử dụng chúng . Do đó , việc xác địng chính xác thành phần hoá học của kaolinit là rất cần thiết, nhằm định hướng biến tính chúng theo các mục đích sử dụng khác nhau sao cho đem đến hiệu quả nhất . (Phương pháp tổng hợp zeolít đi từ khoáng sét . Qua nhiều công trình đã nghiên cứu thì khoáng sét tự nhiên được sử dụng làm nguyên liệu ban đầu có nguồn ngốc xuất sứ và thành phần hoá học rất khác nhau . Quy trình tổng hợp từ mỗi loại có khác biệt đáng kể . Tuy nhiên, đều đáng chú ý của phương pháp này là các khoáng sét đều được nung ở nhiệt độ cao ( 650( 700)0C nhằm loại nước cấu trúc trước khi tạo thành các aluminosilicat tinh thể . I.5 Tính chất xúc tác của zeolít . Các zeolít được ứng dụng rộng rãi làm xúc tác cho nhiều quá trình chuyển hoá học nhờ có 4 tính chất đặc trưng sau [ 21 ] . ( Zeolít có khả năng trao đổi ion : nhờ tính chất này mà người ta cá thể đưa vào trong cấu trúc của zeolit các cation có tíng chất xúc tác như : Cu ,Co,Fe,Mn, cho phản ứng oxy hoá … hay trao đổi với các cation chuyển sang dạng H+ cho các phản ứng cần xúc tác axít…. ( Các zeolít sau khi trao đổi với ion H+ trở thành axít rắn và chứa nhiều tâm axít và lượng axít tương ứng , có khả năng xúc tác khá lớn cho quá trình chuyển hoá học . ( Thể tích xốp trong các zeolít rất lớn , cho phép chúng hấp phụ một lượng lớn các chất phản ứng . Nhờ vậy , nồng độ các phân tử ở xung quanh tâm hoạt tính sẽ lớn hơn ở bề mặt ngoài ,khả năng tương tác ở phản ứng cao hơn , đặc biệt cho phản ứng lưỡng phân tử như Craking, Olygome hoá , chuyển dịch hyderua . (Với hệ cấu trúc mao quản đồng nhất, đường kính nhỏ hơn 10A0, các zeolít thể hiện tính chọn lọc rất cao .Quá trình khuếch tán các tác nhân phản ứng và các sản phẩm trong lỗ xốp của zeolít đóng vai trò quan trọng trong phản ứng xúc tác và như vậy sẽ ảnh hưởng đến tốc độ phản ứng cũng như việc phân bố sản phẩm . Trong 4 tính chất này ,2 yếu tố chiếm vị trí quan trọng nhất , ảnh hưỏng chính đến hoạt tính xúc tác chính là tính chất axít bề mặt và khả năng chọn lọc hình học của zeolít . Đây cũng chính là điều kiện cơ bản trong lựa chon xúc tác thích hợp cho từng quá trình phản ứng nhằm đạt hiệu quả cao nhất. I.5.1Tính chất xúc tác bề mặt . I.5.1.1.Khái niệm và sự hình thành các tâm axít trong xúc tác . Khái niệm về độ axít bề mặt của xúc tác rắn xác phát từ quá trình quan xác thực nghiệm từ các công trình trước . Một số phản ứng được xúc tác bỡi chất rắn cho các sản phẩm gần giống quá trình sử dụng các axít thông thường .Các nhà khoa học thừa nhận rằng các tính chất của nhiều xúc tác chủ yếu là các zeolít chính là nguồn gốc hoạt tính xúc tác
Tài liệu liên quan